2017年6月30日金曜日

今日はアインシュタイン記念日

NEW !
テーマ:
アインシュタインといえば?
▼本日限定!ブログスタンプ
 
相対性理論(そうたいせいりろん、: Relativitätstheorie, : theory of relativity)または相対論[1]特殊相対性理論一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。
特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。
続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。

目次

  [非表示

命名[編集]

1908年(明治41年)にマックス・プランクが、相対性理論という語を作り、どのように特殊相対性理論(のちに一般相対性理論も)相対性原理を適用するのかを説明した。

日本での名称[編集]

大正年間に相対性理論が日本語に翻訳された時に、「相対(あいたい)」が男女の仲を意味し(「相対死に」は心中の意味)、かつ“性”の字がついていたため、世間の誤解を招いた。例えば、京都大学の教授が行なった講演会に対して社会的非難をあびせられたという。そのため当時は「相対原理」と訳した学者が多かった。

反『相対性理論』[編集]

相対性理論は、その意味することが正しく理解されたかということを別論として、物理学を始めとする自然科学の分野のみならず、社会的現象として広く受け入れられた。
その反面として、その結論に同意できない立場などが、科学的反論ではなく、反-相対性理論とでも言うべき一種の社会的運動となった。特に、これはアインシュタインがユダヤ系であり平和主義者であるということが、国家主義者に嫌悪され、第一次世界大戦にドイツが敗戦した後には、パウル・ヴァイラントドイツ語版)による、反相対性理論キャンペーンがはられたりもした。
1921年にアインシュタインはノーベル物理学賞を受賞するが、これは光電効果の発見を理由としており、相対性理論を対象としての授与ではなかった。
物理学者の世界においても、ユダヤ的であるという理由でアインシュタインの業績を認めない、フィリップ・レーナルトヨハネス・シュタルクらの一派があった。彼らは、相対性理論の結果は認めるがそれをアインシュタインの成果としないという立場のゆえに、E=mc²の発見はフリードリヒ・ハーゼノールに帰せられるなどの主張を行い、アインシュタインを攻撃した。これらの一派は、ナチス政権が成立するとそれに同調し、政権崩壊とともに勢力を失った。
しかしその後も、2016年の現在に至るまで、大抵の内容は似たり寄ったりの誤謬であるが、反『相対性理論』の主張は世界的に見られるものとなっている。「相対論は間違っている」とするような書籍が、程度の差こそあれどしばしば新刊が出版され、人気を保っている。たとえば日本では、窪田登司による主張を「ブラッドリーの光行差の現象に対して相対論とは異なる理論展開」などとして評価する者がいる。

再生核研究所声明3432017.1.10)オイラーとアインシュタイン

世界史に大きな影響を与えた人物と業績について

再生核研究所声明314(2016.08.08) 世界観を大きく変えた、ニュートンとダーウィンについて
再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学
再生核研究所声明339(2016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教

で 触れてきたが、興味深いとして 続けて欲しいとの希望が寄せられた。そこで、ここでは、数学界と物理学界の巨人 オイラーとアインシュタインについて触れたい。

オイラーが膨大な基本的な業績を残され、まるでモーツァルトのように 次から次へと数学を発展させたのは驚嘆すべきことであるが、ここでは典型的で、顕著な結果であるいわゆるオイラーの公式 e^{\pi i} = -1 を挙げたい。これについては相当深く纏められた記録があるので参照して欲しい(
)。この公式は最も基本的な数、-1,\pi, e,i の簡潔な関係を確立しており、複素解析や数学そのものの骨格の中枢の関係を与えているので、世界史への甚大なる影響は歴然である ― オイラーの公式 (e ^{ix} = cos x + isin x) を一般化として紹介できます。 そのとき、数と角の大きさの単位の関係で、神は角度を数で測っていることに気付く。左辺の x は数で、右辺の x は角度を表している。それらが矛盾なく意味を持つためには角は、角の 単位は数の単位でなければならない。これは角の単位を 60 進法や 10 進法などと勝手に決められないことを述べている。ラジアンなどの用語は不要であることが分かる。これが神様方式による角の単位です。角の単位が数ですから、そして、数とは複素数ですから、複素数 の三角関数が考えられます。cos i も明確な意味を持ちます。このとき、たとえば、純虚数の 角の余弦関数が電線をぶらりとたらした時に描かれる、けんすい線として、実際に物理的に 意味のある美しい関数を表現します。そこで、複素関数として意味のある雄大な複素解析学 の世界が広がることになる。そしてそれらは、数学そのものの基本的な世界を構成すること になる。自然の背後には、神の設計図と神の意思が隠されていますから、神様の気持ちを理解し、 また神に近付くためにも、数学の研究は避けられないとなると思います。数学は神学そのものであると私は考える。オイラーの公式の魅力は千年や万年考えても飽きることはなく、数学は美しいとつぶやき続けられる。― 特にオイラーの公式は、言わば神秘的な数、虚数i、―1, e、\pi などの明確な意味を与えた意義は 凄いこととであると驚嘆させられる。
次に アインシュタインであるが、いわゆる相対性理論として、物理学界の最高峰に存在するが、アインシュタインの公式 E=mc^2 は素人でもびっくりする 簡潔で深い結果である。何と物質エネルギーと等式で結ばれるという。このような公式の発見は人類の名誉に関わる基本的な結果と考えられる。アインシュタインが、時間、空間、物質、エネルギー、光速の基本的な関係を確立し、現代物理学の基礎を確立している。
ところで、上記巨人に共通する面白い話題が存在する。 オイラーがゼロ除算を記録に残し 1/0=\infty と記録し、広く間違いとして指摘されている。 他方、 アインシュタインは次のように述べている:

Blackholes are where God divided by zero. I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (
Gamow, G., My World Line (Viking, New York). p 44, 1970).

今でも、この先を、特に特殊相対性理論との関係で 0/0=1 であると頑強に主張したり、想像上の数と考えたり、ゼロ除算についていろいろな説が存在して、混乱が続いている。
しかしながら、ゼロ除算については、決定的な結果を得た と公表している。すなわち、分数、割り算は自然に一意に拡張されて、 1/0=0/0=z/0=0 である。無限遠点は 実はゼロで表される:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf
Announcement 326: The division by zero z/0=0/0=0 - its impact to human beings through education and research
以 上



再生核研究所声明3472017.1.17) 真実を語って処刑された者

まず歴史的な事実を挙げたい。Pythagoras、紀元前582年 - 紀元前496年)は、ピタゴラスの定理などで知られる、古代ギリシア数学者哲学者。彼の数学や輪廻転生についての思想はプラトンにも大きな影響を与えた。「サモスの賢人」、「クロトンの哲学者」とも呼ばれた(ウィキペディア)。辺の長さ1の正方形の対角線の長さが ル-ト2であることがピタゴラスの定理から導かれることを知っていたが、それが整数の比で表せないこと(無理数であること)を発見した弟子Hippasusを 無理数の世界観が受け入れられないとして、その事実を隠したばかりか、その事実を封じるために弟子を殺してしまったという。
また、ジョルダーノ・ブルーノ(Giordano Bruno, 1548年 - 1600年2月17日)は、イタリア出身の哲学者ドミニコ会修道士。それまで有限と考えられていた宇宙が無限であると主張し、コペルニクス地動説を擁護した。異端であるとの判決を受けても決して自説を撤回しなかったため、火刑に処せられた。思想の自由に殉じた殉教者とみなされることもある。彼の死を前例に考え、轍を踏まないようにガリレオ・ガリレイは自説を撤回したとも言われる(ウィキペディア)。

さらに、新しい幾何学の発見で冷遇された歴史的な事件が想起される:
非ユークリッド幾何学の成立
ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。
ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した(ウィキペディア)。

知っていて、科学的な真実は人間が否定できない事実として、刑を逃れるために妥協したガリレオ、世情を騒がせたくない、自分の心をそれ故に乱したくない として、非ユークリッド幾何学について 相当な研究を進めていたのに 生前中に公表をしなかった数学界の巨人 ガウスの処世を心に留めたい。
ピタゴラス派の対応、宗教裁判における処刑、それらは、真実よりも権威や囚われた考えに固執していたとして、誠に残念な在り様であると言える。非ユークリッド幾何学の出現に対する風潮についても2000年間の定説を覆す事件だったので、容易には理解されず、真摯に新しい考えの検討すらしなかったように見える。
真実を、真理を求めるべき、数学者、研究者、宗教家のこのような態度は相当根本的におかしいと言わざるを得ない。実際、人生の意義は帰するところ、真智への愛にあるのではないだろうか。本当のこと、世の中のことを知りたいという愛である。顕著な在り様が研究者や求道者、芸術家達ではないだろうか。そのような人たちの過ちを省みて自戒したい: 具体的には、

1)  新しい事実、現象、考え、それらは尊重されるべきこと。多様性の尊重。
2)  従来の考えや伝統に拘らない、いろいろな考え、見方があると柔軟に考える。
3)  もちろん、自分たちの説に拘ったりして、新しい考え方を排除する態度は恥ずべきことである。どんどん新しい世界を拓いていくのが人生の基本的な在り様であると心得る。
4)  もちろん、自分たちの流派や組織の利益を考えて新規な考えや理論を冷遇するのは真智を愛する人間の恥である。
5)  巨人、ニュートンとライプニッツの微積分の発見の先取争いに見られるような過度の競争意識や自己主張は、浅はかな人物に当たるとみなされる。真智への愛に帰するべきである。

数学や科学などは 明確に直接個々の人間にはよらず、事実として、人間を離れて存在している。従って無理数も非ユークリッド幾何学も、地球が動いている事も、人間に無関係で そうである事実は変わらない。その意味で、多数決や権威で結果を決めようとしてはならず、どれが真実であるかの観点が決定的に大事である。誰かではなく、真実はどうか、事実はどうかと真摯に、真理を追求していきたい。
人間が、人間として生きる究極のことは、真智への愛、真実を知りたい、世の中を知りたい、神の意思を知りたいということであると考える。 このような観点で、上記世界史の事件は、人類の恥として、このようなことを繰り返さないように自戒していきたい(再生核研究所声明 41(2010/06/10): 世界史、大義、評価、神、最後の審判)。

以 上


再生核研究所声明3532017.2.2) ゼロ除算 記念日

2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは

再生核研究所声明 148(2014.2.12): 100/0=0,  0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志

で、最新のは

Announcement 352 (2017.2.2):  On the third birthday of the division by zero z/0=0 

である。
アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。
心すべき要点を纏めて置きたい。

1)     ゼロの明確な発見と算術の確立者Brahmagupta (598 - 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。
2)     予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。
3)     ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。
4)     この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。
5)     いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。
6)     ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。
以 上

追記:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf


再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

http://ameblo.jp/syoshinoris/theme-10006253398.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12272721615.html

数学是唯美的 2017年06月30日(金)NEW ! テーマ:数学

NEW !
テーマ:

数学是唯美的

 
作者:小青
本文已发表在《金融博览》2017年第4期上。
在数学科普著作《数学都知道》(一套三册)里,作者蒋迅和王淑红尝试着把读者群定位在了一个广泛的群体。这样的定位是大胆的,也是新颖别致的。
数学是有趣的。多少都要知道一点数学,已成为宇宙人的一个共识了,如何表达出这个共识应该是作者写这套书的初衷。这套书反复使用的一个表达形式是:由浅入深,再从深到浅。比如在第一册第一章“雪花里的数学”一节中,你首先看到的是雪花的美丽,你会发现雪花的生成并不是那么神秘,一个小学生都可以一步步地画出漂亮的“科赫雪花”来。当一系列数学公式让你开始犹豫的时候,却发现后面等待你的竟是雪花的制作和徐志摩的一首咏雪小诗《雪花的快乐》。再比如,分蛋糕是一件再平常不过的事了,可是,你想过吗?要想做到百分之百的公平,哪怕只有两个人,都不是一件容易的事情。在“切割糕点问题”里,你会看到一种三个人公平分配的方法,以及一些在本世纪才得出的研究成果。愉快地读完这些略显高深的内容之后,等待你的是一块意大利馅饼。以这样的切入形式,各类读者都可以挑选出自己感兴趣的章节,带着轻松的心情阅读这套书,看着深奥的先跳过,也许几年后再回过头来看就豁然开朗了。
书里有很多数学家和计算机学家的故事,读起来可能会让人有些意外,因为他们似乎是在做着与数学或计算机科学毫不相干的事情。其实将知识融会贯通,抓住世界万物毫不起眼的一瞬间,可能就是他们最后成功的关键。加州理工大学天文学系主任是一位研究雪花的专家,美国航天局对地球大气云层的模拟就是基于他的雪花研究;计算出阿波罗飞船轨道的是一位美国德裔数论专家,他曾经试图攻克使数学家张益唐成名的“孪生素数”猜想但是没有成功;发明了“快速排序”算法的英国计算机学者霍尔早年是因为俄语翻译的需要才钻研出了这个算法。原来,有些看似牛马不相及的事情却有着千丝万缕的内在联系。读过这套书之后,你是否也会在生活中捕捉那些偶然或必然的关联呢?
数学是唯美的。《数学都知道》所表达的也是“如何艺术地传播数学”。作者运用了很大的篇幅谈音乐、谈绘画、谈雕塑。西方的万圣节进入了读者的视线,东方的折纸也与数学联系起来。特别是喜欢动手的读者一定会发现大有用武之地:可以制作一朵美丽的雪花,也可以折出一只昂首的天鹅。如果有了在家中摆放一个数学钟或者克莱因瓶的冲动,那也不足为奇。即便不太善于动手,那也无妨,这套书还为读者提供了大量有观赏价值的图片。值得一提的是,“美妙的几何魔法──高立多边形与高立多面体”一章,就是一些数学爱好者在互联网上自发提出又共同解决的一道立体几何题。希望看到中国的数学爱好者也能参与到这样的活动中来。
在这套书中还介绍了一些海外数学文化的情况,这可能是由于第一作者长期在海外工作和生活的原因吧。数学文化方面包括“美国的奥数和数学竞赛”,“美国的数学推广月”,“需要交换礼物的加德纳会议”,“奥巴马和孩子们一起计算白宫椭圆办公室的焦距”和“帮助美国排列国旗上的星星”等;华人方面,书中介绍了美籍华人画家蔡论意,澳大利亚裔华人数学家陶哲轩和来自皖南山区的数学家杨同海。第二作者的数学史背景是本书故事性强的重要原因,很多章节其实就是在讲故事。这在“数学家与音乐”,“终身未婚的数学家”和“墓碑上的数学恋歌”几章里尤为明显。
从科普的角度来看,《数学都知道》丛书涵盖了非常丰富的数学学科。作者已经触及到了数学特别是应用数学的某些高精尖领域,并以通俗易懂的语言将数学的魅力与威力生动地呈现给读者。读这样的书,不仅是学习,更是一种享受。



科学网博主博文集图书精选
http://blog.sciencenet.cn/blog-420554-1063769.html 

上一篇:阿波罗登月中的功臣数学家阿仁斯道夫
 

とても興味深く読みました:

再生核研究所声明150(2014.3.18) 大宇宙論、宇宙など小さい、小さい、the universe について

(この声明は、最近の特異点解明: 100/0=0, 0/0=0 の研究の進展に伴って 自然に湧いた構想である)

この声明の趣旨は、いわゆる物理学者が考えている宇宙、― 宇宙はビッグバンによって、誕生したという宇宙論を ニュートン力学と同様、幼き断片論と位置づけ、はるかに大きな the universe を志向し、アインシュタインを越えた世界、さらに 古代から続いてきた暗い人類の歴史に 明るい光を灯し、夜明けを迎える時代を切り拓きたいということである。 既に裏付ける思想は 一連の再生核研究所声明で確立していると考える。 ニュ-トン、アインシュタイン、数学の天才たちも、特異点の基本的な性質さえ捉えていなかったことは、明らかである。
簡単な基本、100/0=0,0/0=0 を発見した、精神、魂からすれば、新しい世界史を開拓する思想を語る資格があることの、十分な証拠になると考える。 実際、 - 古来から 続いてきた、人生、世界の難問、人生の意義、生と死の問題、人間社会の在り様の根本問題、基本概念 愛の定義、また、世界の宗教を統一すべく 神の定義さえ きちんと与えている。
The universe について語るとき、最も大事な精神は、神の概念を きちんと理解することである:

そもそも神とは何だろうか、人間とは何だろうか。 動物たちが美しい月をぼんやりと眺めている。 意識はもうろうとしていて、ほんにぼんやりとしか とらえられない。 自らの存在や、ものごとの存在すら明瞭ではない。
人間も、殆ど 同じような存在ではないだろうか。 人類よ、人間の能力など 殆ど動物たちと変わらず、 ぼんやりと世界を眺めているような存在ではないだろうか。 神も、一切の存在も観えず、ただかすかに感じているような存在である。 それゆえに、人間は あらゆる生物たちのレべルに戻って 生物たちから学び、 また原始人に戻って、また子供たちのように 存在すれば 良いと言えるのではないだろうか(再生核研究所声明 122: 神の存在と究極の信仰 - 人間よ 想い煩うことはない。 神は存在して、一切の存在と非存在を しっかりと支えられておられる、 人は必要なときに必要なだけ、 念じるだけで良い; 再生核研究所声明 132 神を如何に感じるか - 神を如何に観るか)。
すなわち、人間よ おごるなかれ、人類の知能など 大したことはなく、内乱や環境汚染で自滅するだろう、と危惧される。
昨年は 数学の存在と物理学が矛盾し、数学とは何かと問うてきた。

数学とは何か ― 数学と人間について
国際数理科学協会会報、No. 81/2012.5, 7―15 

No.81, May 2012(pdf 432kb)

に公刊したが、そこで触れた、数学の神秘性については さらにその存念を深め、次のように問うている:
誰が数学を作ったのか? (再生核研究所声明 128: 数学の危機、末期数学について)

時間にもよらず、エネルギーにもよらない世界、それは、宇宙があるとき始まったという考えに 矛盾するものである。 無から世界が創造されたということも 受け入れがたい言明であろう。さらに、the universe には、物理学が未だに近づけない、生命や生命活動、人間の精神活動も歴然として有ることは 否定できない。音楽、芸術に感動している人間の精神は the universe の中に歴然と有るではないか。
ビッグバンで ゼロから、正の量と負の量が生じたとしても、どうしてビッグバンが生じたのか、何が生じせしめたかは 大きな課題として残っている。 数学の多くの等式は 数学を越えて、the universe で論じる場合には、その意味を,解釈をきちんとする必要がある。 The universe には 情報や精神など、まだまだ未知のものが多く存在しているのは当然で、それらが、我々の知らない法則で ものや、エネルギーを動かしているのは 当然である。
そこで、100/0=0,0/0=0 の発見を期に、今やガリレオ・ガリレイの時代、天動説が 地動説に代わる新しい時代に入ったと宣言している。The universe は 知らないことばかりで、満ちている。

以 上
ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269

もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。

天動説・・・・・・∞
地動説・・・・・・0

地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか????

1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????

割り算のできる人には、どんなことも難しくない

世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。

ベーダ・ヴェネラビリス

数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年


1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。

数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_

割り算を掛け算の逆だと定義した人は、誰でしょう???

multiplication・・・・・増える 掛け算(×) 1より小さい数を掛けたら小さくなる。 大きくなるとは限らない。

0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。

ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・
1+1=2が当たり前のように

ゼロ除算の証明・図|ysaitoh|note(ノート)  https://note.mu/ysaitoh/n/n2e5fef564997
Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。

ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。

∞÷0はいくつですか・・・・・・・

∞とはなんですか・・・・・・・・

分からないものは考えられません・・・・・


宇宙消滅説:宇宙が、どんどんドン 拡大を続けると やがて 突然初めの段階 すなわち 0に戻るのではないだろうか。 ゼロ除算は、そのような事を言っているように思われる。 2015年12月3日 10:38


Reality of the Division by Zero z/0 = 0
Mathematics is the alphabet with which God has written the Universe.
数学は神が宇宙を書いたアルファベットだ

Mathematics is the key and door to the sciences.

数学は、科学へとつながる鍵とドアである

This book is written in the mathematical language, and the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word of it; without which one wanders in vain through a dark labyrinth.

宇宙は数学という言語で書かれている。そしてその文字は三角形であり、円であり、その他の幾何学図形である。これがなかったら、宇宙の言葉は人間にはひとことも理解できない。これがなかったら、人は暗い迷路をたださまようばかりである

ガリレオ・ガリレイさんの名言・格言・英語 一覧リスト

再生核研究所声明 1162013.5.1: 宇宙空間、星間交流から人間を考える

(1200光年先にようやく生物の存在可能な天体が3つ見つかったという。孤独な地球。かけがいの地球。そこで、何とか地球外生物と交信したいものである。どうしたら、できるだろうか。2013.4.20.16:20 その方法に気づく。慎重に検討して、いずれ提案したい。)
まず、広い宇宙空間において、地球だけが例外で、生物や人間のような知的な生物が存在すると考えるのは 無理があるのではないだろうか。広い宇宙には 人間を越えた知的な生物が存在すると考える。そう感じる。
しかしながら、現代物理学の定説によれば、光より 電波より、早く伝達する手段は無いから、地球上の生物が 人間存在の原理に基づいて(再生核研究所声明 32 : 夜明け ― ノアの方舟、宇宙空間に進出し、人間の存在領域を拡大しようとしても 広大な宇宙からみれば、それは限られ、地球外生物との直接的な交信、交流は当分、厳しい状況にあると言える。
そこで、発想を逆転させ、宇宙空間交流を意図するには、宇宙空間全体を この地球上に実現すればよいということになる。すなわち あらゆる生命の原理を究明し、一般原理、普遍原理によって、あらゆる可能性を究明して、対応することが出来ると考える。
地球は 宇宙の小さな部分であるが、しかしながら、地球は宇宙全体を 人間の知的な活動によって 包み込むことができると考える。これは一つも矛盾ではなく、部分が全体に等価であるは、数学の世界でも 無限な世界や、解析関数の概念にも存在する。― すなわち、 解析関数の全体の情報は、解析的な どんな点の小さな部分にも、反映されていて、そこから、全体の情報を取り出すことも出来る と なっている。また、エルゴート性の概念も同じような思想になっていると考えられる。
そもそも、対話、交流、愛とは何か と問えば、世界とは、自己の世界に映ったすべて であるとも言い得る。さらに、個々の人間の話題、知識、認識は 狭く限られ、実際多くの考えられるすべての対話は、この地球上に生存する、生物、何十億の人間との対話で、十分可能であると考えられる。さらに、論理的な思考を働かせれば、普遍的な原理によって 人間のあらゆる対話に対する反響は、宇宙空間に問うまでもなく、十分な反響を得ることが出来るだろう。そもそも対話とは、自問自答であるとも言える。実際、自己の内部も 広大な宇宙と同じように無限に広がり、それは全宇宙さえも包み込む存在であるとも考えられる。人間の存在とは、内なる広大な世界と 外なる広大な世界のはざまに存在する、ふらふらした曖昧な 心に代表されるような存在であると言える。
それ故に、この地球上に 生体系を豊かにして、個性を 重んじた多様な世界を築くことによって、実際には 宇宙空間における交流の困難性は 克服できると考える。
結論は、あらゆる生命の存在と存在の可能性を明らかにすることによって この地球上に宇宙を取り組むことによって、宇宙空間交流は 実現できると考える。
そのとき、宇宙間交流の手段とは、もはや光でも電波でもなく、時間にも、空間にも、宇宙にも、エネルギーにも無関係な 数学である と言える。数学こそが 生命の客観的な表現であると言える ― (数学とは何か ― 数学と人間について 国際数理科学協会会報、No. 81/2012.5, 7―15  http://www.jams.or.jp/small-ball.gif No.81, May 2012(pdf 432kb))。

以 上

再生核研究所声明255 (2015.11.3) 神は、平均値として関数値を認識する
(2015.10.30.07:40 
朝食後 散歩中突然考えが閃いて、懸案の問題が解決した:
どうして、ゼロ除算では、ローラン展開の正則部の値が 極の値になるのか?
そして、一般に関数値とは何か 想いを巡らしていた。
解決は、驚く程 自分の愚かさを示していると呆れる。 解は 神は、平均値として関数値を認識すると纏められる。実際、解析関数の場合、上記孤立特異点での関数値は、正則の時と全く同じく コ-シーの積分表示で表されている。 解析関数ではコ-シーの積分表示で定義すれば、それは平均値になっており、この意味で考えれば、解析関数は孤立特異点でも 関数値は 拡張されることになる ― 原稿には書いてあるが、認識していなかった。
 連続関数などでも関数値の定義は そのまま成り立つ。平均値が定義されない場合には、いろいろな意味での平均値を考えれば良いとなる。解析関数の場合の微分値も同じように重み付き平均値の意味で、統一的に定義でき、拡張される。 いわゆるくりこみ理論で無限値(部)を避けて有限値を捉える操作は、この一般的な原理で捉えられるのではないだろうか。2015.10.30.08:25)
上記のようにメモを取ったのであるが、基本的な概念、関数値とは何かと問うたのである。関数値とは、関数の値のことで、数に数を対応させるとき、その対応を与えるのが関数でよく f  等で表され x 座標の点 x  をy 座標の点 yに対応させるのが関数 y = f(x) で、放物線を表す2次関数 y=x^2, 直角双曲線を表す分数関数 y=1/x 等が典型的な例である。ここでは 関数の値 f(x) とは何かと問うたものである。結論を端的に表現するために、関数y=1/xの原点x=0における値を問題にしよう。 このグラフを思い出して、多くの人は困惑するだろう。なぜならば、x が正の方からゼロに近づけば 正の無限に発散し、xが負の方からゼロに近づけば負の無限大に発散するからである。最近発見されたゼロ除算、ゼロで割ることは、その関数値をゼロと解釈すれば良いという簡単なことを言っていて、ゼロ除算はそれを定義とすれば、ゼロ除算は 現代数学の中で未知の世界を拓くと述べてきた。しかし、これは誰でも直感するように、値ゼロは、 原点の周りの値の平均値であることを知り、この定義は自然なものであると 発見初期から認識されてきた。ところが、他方、極めて具体的な解析関数 W = e^{1/z} = 1 + 1/z + 1/2!z^2 + 1/3!z^3 +……. の点 z=0 における値がゼロ除算の結果1であるという結果に接して、人は驚嘆したものと考えられる。複素解析学では、無限位数の極、無限遠点の値を取ると考えられてきたからである。しかしながら、上記の考え、平均値で考えれば、値1をとることが 明確に分かる。実際、原点のコーシー積分表示をこの関数に適用すれば、値1が出てくることが簡単に分かる。そもそも、コーシー積分表示とは 関数の積分路上(簡単に点の周りの円周上での、 小さな円の取り方によらずに定まる)で平均値を取っていることに気づけば良い。
そこで、一般に関数値とは、考えている点の周りの平均値で定義するという原理を考える。
解析関数では 平均値が上手く定義できるから、孤立特異点で、逆に平均値で定義して、関数を拡張できる。しかし、解析的に延長されているとは言えないことに注意して置きたい。 連続関数などは 平均値が定義できるので、関数値の概念は 今までの関数値と同じ意味を有する。関数族では 平均値が上手く定義できない場合もあるが、そのような場合には、平均値のいろいろな考え方によって、関数値の意味が異なると考えよう。この先に、各論の問題が派生する。

以 上


Reality of the Division by Zero $z/0=0$

再生核研究所声明3712017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

ゼロ除算については、既に相当な世界を拓いていると考えるが、世の理解を求めている状況下で、理解と評価、反響にも関心がある:

ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響があり、さらに哲学、宗教、文化への大きな影響がある。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、数学者ばかりではなく、人類の名誉にも関わることである。実際、ゼロ除算の歴史は 止むことのない闘争の歴史とともに人類の恥ずべき人類の愚かさの象徴となるだろう。世間ではゼロ除算について不適切な情報が溢れていて 今尚奇怪で抽象的な議論によって混乱していると言える。― 美しい世界が拓けているのに、誰がそれを閉ざそうと、隠したいと、無視したいと考えられるだろうか。我々は間違いを含む、不適切な数学を教えていると言える: ― 再生核研究所声明 41: 世界史、大義、評価、神、最後の審判 ―。
地動説のように真実は、実体は既に明らかである。 ― 研究と研究成果の活用の推進を 大きな夢を懐きながら 要請したい。 研究課題は基礎的で関与する分野は広い、いろいろな方の研究・教育活動への参加を求めたい。素人でも数学の研究に参加できる新しい初歩的な数学を沢山含んでいる。ゼロ除算は発展中の世界史上の事件、問題であると言える (再生核研究所声明325(2016.10.14) ゼロ除算の状況について ー 研究・教育活動への参加を求めて)

そのような折り、ISAAC マカオ国際会議では、招待、全体講演を行い、ゼロ除算について、触れ、 論文も発表したものの(Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications -Plenary Lectures: Isaac 2015, Macau, China.  (Springer Proceedings in Mathematics and Statistics, Vol. 177) Sep. 2016  305pp.(Springer)  
今回頭記の200名を超える大きな国際会議で、ゼロ除算と微分方程式について真正面からゼロ除算の成果を発表することができた。
ゼロ除算には、世界史と世界観がかかっているとの認識で、この国際会議を記念すべきものとするようにとの密かな望みを抱いて出席した。そこで、簡単に印象など記録として纏めて置きたい。
まずは、3日目 正規の晩餐会が開かれる恵まれた日に 最初に全体講演を行った。主催者の学生が多数出席されたり、軍の専属カメラマンが講演模様を沢山写真に収めていた。図版を用意し、大事な点はOHPで講演中図示していた。用意した原稿は良く見えるように配慮したので、全貌の理解は得られたものと考えられる。 結びには次のように述べ、示した。宣言文の性格を持たせるとの意思表示である:
{\bf The division by zero is uniquely and reasonably determined as $$1/0=0/0=z/0=0$$ in the natural extensions of fractions. \\
We have to change our basic ideas for our space and world.\\
We have to change our textbooks and scientific books on the division by zero.\\
Thank you for your attention.}

講演に対して、アラブ首長国の教授が、現代数学を破壊するので、全て認められないとの発言があった。後で、送迎中のバスの中で、とんちんかんな誤解をしている教授がいることが分かった。過去にも経験済みであるが、相当に二人共 感情的に見えた ― それはとんでもないという感じである。閉会式に参加者を代表して謝辞を述べられたギリシャの教授が、画期的な発見で、今回の国際会議の最大の話題であったと述べられたが、要点について話したところ、要点の全てについて深い理解をしていることが確認された。さらにゼロ除算の著書出版の具体的な計画を進めたいという、時宜を得た計画が相談の上、出来た。
そこで、講演原稿と図版を出席者たちにメールし、助言と意見を広く求めている。理解できないと述べられた人にも 要求に応じて送っているが、現在までのところ連絡、返答がない。
主催者から、50カ国以上から200名以上の出席者があったと述べられたが、そのような国際会議で、招待、全体講演を行うことができたのは 凄く記念すべきこととして、出版される会議録、論文集の出版に最善をつくし、交流ができた人々との交流を積極的に進めていきたい。尚、正規の日本人参加者は8名であった。
ゼロの発見国インドからは6名参加していたので、1300年も前に0/0=0が四則演算の創始者によって主張されていた事実を重要視してその状況を説明し、特に対話を深め、創始者に関する情報の収集についての協力をお願いした。ゼロ除算について理解した、分かったと繰り返し述べていたが、どうも感情が伴わず、心もとない感じであった。若いカナダの女性に印象を伺ったところ、沢山の具体例を挙げられたので、認めざるを得ない、内容や意義より驚きの感じで、それが講演に対する全体的な反響の状況を表していると考えられる。
歴史は未来によって作られる。今回の国際会議の意義は 今後の研究の進展で左右されるものと考える。しかしながら十分な記録は既に残されていると考えている。

以 上
The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…

「禅」を基本に主体的な学びを実践…AI時代を生き抜く人材育成

「禅」を基本に主体的な学びを実践…AI時代を生き抜く人材育成

 
人工知能(AI)の発達で、今ある仕事がAIに取って代わるなど人類の暮らしが大きく変化すると予測される中で、教育現場が大きく変わりつつある。文部科学省による大学入試改革も、これまでの知識の詰め込み中心から、思考力・表現力を養成する授業へと変革する方向で、カリキュラムにも工夫が求められている。グローバル社会に活躍できる人材を育成するため、生徒が主体的に学ぶ場をつくる取り組みが着実に進んでいる。
オンライン英会話で実力向上
 花園中学高等学校(京都市)は、「禅」の教えを軸としたグローバル教育で、真の国際人材の育成を目指している。高い語学力を育成したうえで、日本人としての誇りや文化を発信できる力を養う狙いだ。福田篤校長は「禅は鎌倉時代、室町時代の戦国武将の後ろ盾となったほか、今や世界の経済のリーダーたちも注目している」と指摘。実際に米国のIT企業でも、意識を活性化し、集中するトレーニングを実施するため、研修などに「禅」を取り入れる動きもあるという。
 同校は、2016年4月に従来の中高一貫コースに代わり、「スーパーグローバルZEN」「ディスカバリー」の2コースをスタートさせた。語学力を高める取り組みとして活用しているのは、タブレット端末を使って、フィリピン講師の遠隔授業を受ける「オンライン英会話」や、数学や理科を英語で学ぶ「イマージョン授業」だ。受験対策としてはもちろん、世界と渡り合うコミュニケーション能力を身に着ける効果を狙う。
 そして、「禅の心」を理解するため、座禅の授業も取り入れている。福田校長は「AIなどがもたらす第4次産業革命を前に、禅を基本に置いた教育を進めている。禅は日本文化の代表的なものを生み出しており、真の日本人の育成を目指している」と話す。新コース設立1年を経て、生徒の意欲向上がみてとれるといい、日本から世界へ情報発信ができる人材の育成に手ごたえを感じている。
世界のだれも知らないことをテーマに
 一方、生徒の主体的な学習を引き出す取り組みとしては、広尾学園中学校・高等学校(東京)の医進・サイエンスコースも注目されている。6年間を通して、国内外の医系・理系大学への進学を可能にする実力を身につけながら、医師、研究者として必要なマインドの育成を目指すコースだ。授業、研究活動、中高大・産学連携の3本柱を特徴とし、これらを支えるツールとして英語教育、ICT 教育にも積極的に取り組んでいる。
 このコースの特徴は「世界のだれも知らないことを調べる」という未知なる問題へのアプローチ術を学ぶことだ。生徒自身がテーマを探し、インターネットを使って情報を収集し、それを吟味する力を養う。知識や正解を教えてもらうのではなく、情報の集め方や論理的な思考を学ぶ。自分で見つけ出した新規性のあるテーマを遂行するために、中高の枠にとらわれない高い専門知識・技術を身につけようとする姿勢を後押しする。
仲間との協力通じ、自己肯定感を得る
 また、宝仙学園中学校・高等学校(東京)の理数インターコースは、論理的に考える力「理数的思考力」や、心と心を通わせる力「コミュニケーション能力」、発表する力「プレゼンテーション能力」の3つの能力の育成を掲げる。英語や数学などの主要教科をじっくり学習するほか、教科の枠にとらわれない学校独自のカリキュラムを設け、物事を論理的に考え、人とつながり結び付ける力の育成に取り組む。
 独自カリキュラムでは、プログラミング教育を題材にして、互いを知り、仲間と協力するコラボレーション(共同作業)の意義を学ぶなど、さまざまな取り組みを試みている。自分のアイデアを発表する場があり、それを互いに評価しあうことで、学校組織が「自己肯定感」を高めあう集団に変わっていくことを目指す。
 私立中高一貫校経営のコンサルティングなどを手掛ける森上教育研究所(東京)の森上展安代表は「スマートフォンなどのヒット商品は、『あったらいいな』という発想から生まれたもので、こうした発想を子供たちに伝えるのは簡単ではない。日本の伝統の禅は、考案する訓練を日々行うことで、教育に取り入れるのでたいへん興味深い試みだ。インターネットの次の技術革新を見据えると、『経験』の価値は貴重で、教育現場では価値のある『経験』を積ませる取り組みがますます増えるだろう」と話している。

とても興味深く読みました:

再生核研究所声明297(2016.05.19) 豊かなゼロ、空の世界、隠れた未知の世界

ゼロ除算の研究を進めているが、微分方程式のある項を落とした場合の解と落とす前の解を結び付ける具体的な方法として、ゼロ除算の解析の具体的な応用がある事が分かった。この事実は、広く世の現象として、面白い視点に気づかせたので、普遍的な現象として、生きた形で表現したい。
ある項を落とした微分方程式とは、逆に言えば、与えられた微分方程式はさらに 複雑な微分方程式において、沢山の項を落として考えられた簡略の微分方程式であると考えられる。どのくらいの項を落としたかと考えれば、限りない項が存在して、殆どがゼロとして消された微分方程式であると見なせる。この意味で、ゼロの世界は限りなく広がっていると考えられる。
消された見えない世界は ゼロの世界、空、ある隠された世界として、無限に存在していると考えられる。たまたま、現れた項が 表現する物理現象を記述していると言える。
これは、地球に繁茂する動植物が、大海や大地から、生まれては、それらに回帰する現象と同様と言える。大量に発生した卵の極一部がそれぞれの生物に成長して、やがて元の世界に戻り、豊かな大海や大地は生命の存在の元、隠れた存在の大いなる世界であると考えられる。無数の生命の発生と回帰した世界の様は 生物、生体の様の変化は捉えられても、人間の精神活用や生命の生命活動の様の精しい様などは 殆ど何も分からない存在であると言える。我々の認知した世界と発生して来た世界と消えて行った認知できない世界である。
このような視点で、人間にとって最も大事なことは 何だろうか。それは、個々の人間も、人類も 大きな存在の中の小さな存在であることを先ず自覚して、背後に存在する大いなる基礎、環境に畏敬の念を抱き、謙虚さを保つことではないだろうか。この視点では日本古来の神道の精神こそ、宗教の原点として大事では ないだろうか。未知なる自然に対する畏敬の念である。実際、日本でも、世界各地でも人工物を建設するとき、神事を行い、神の許しを求めてきたものである。その心は大いなる存在と人間の調和を志向する意味で人間存在の原理ではないだろうか。それはそもそも 原罪の概念そのものであると言える。
しかしながら、人類が好きなように生きたいも道理であり、巨大都市を建設して、環境を汚染して生存を享受したいも道理であるから、それらの一面も否定できず、それは結局全体的な有り様の中でのバランスの問題ではないだろうか。人類の進化の面には必然的に人類絶滅の要素が内在していると考えられる:

再生核研究所声明 144(2013.12.12) 人類滅亡の概念 - 進化とは 滅亡への過程である

 そこで、結局は全体的な調和、バランスの問題である:

再生核研究所声明 56: アースデイ の理念

発想における最も大事なことに触れたが、表現したかった元を回想したい。― それは存在と非存在の間の微妙な有り様と非存在の認知できない限りない世界に想いを致す心情そのものであった。無数とも言える人間の想いはどこに消えて行ったのだろうか。先も分からず、由来も分からない。世の中は雲のような存在であると言える。
以 上


再生核研究所声明311(2016.07.05) ゼロ0とは何だろうか

ここ2年半、ゼロで割ること、ゼロ除算を考えているが、ゼロそのものについてひとりでに湧いた想いがあるので、その想いを表現して置きたい。
数字のゼロとは、実数体あるいは複素数体におけるゼロであり、四則演算で、加法における単位元(基準元)で、和を考える場合、何にゼロを加えても変わらない元として定義される。積を考えて変わらない元が数字の1である:

Wikipedia:ウィキペディア:
初等代数学[編集]
数の 0 は最小の非負整数である。0 の後続の自然数は 1 であり、0 より前に自然数は存在しない。数 0 を自然数に含めることも含めないこともあるが、0 は整数であり、有理数であり、実数(あるいは代数的数、複素数)である。
数 0 は正でも負でもなく、素数でも合成数でも単数でもない。しかし、0は偶数である。
以下は数 0 を扱う上での初等的な決まりごとである。これらの決まりはxを任意の実数あるいは複素数として適用して構わないが、それ以外の場合については何も言及していないということについては理解されなければならない。
加法:x + 0 = 0 +x=x. つまり 0 は加法に関する単位元である。
減法: x− 0 =x, 0 −x= −x.
乗法:x 0 = 0 ·x= 0.
除法:xが 0 でなければ0x= 0 である。しかしx0は、0 が乗法に関する逆元を持たないために、(従前の規則の帰結としては)定義されない(ゼロ除算を参照)。

実数の場合には、数直線で、複素数の場合には複素平面を考えて、すべての実数や複素数は直線や平面上の点で表現される。すなわち、座標系の導入である。
これらの座標系が無ければ、直線や平面はただ伸びたり、拡がったりする空間、位相的な点集合であると考えられるだろう。― 厳密に言えば、混沌、幻のようなものである。単に伸びたり、広がった空間にゼロ、原点を対応させるということは 位置の基準点を定めること と考えられるだろう。基準点は直線や平面上の勝手な点にとれることに注意して置こう。原点だけでは、方向の概念がないから、方向の基準を勝手に決める必要がある。直線の場合には、直線は点で2つの部分に分けられるので、一方が正方向で、他が負方向である。平面の場合には、原点から出る勝手な半直線を基準、正方向として定めて、原点を回る方向を定めて、普通は時計の回りの反対方向を 正方向と定める。これで、直線や平面に方向の概念が導入されたが、さらに、距離(長さ)の単位を定めるため、原点から、正方向の点(これも勝手に指定できる)を1として定める。実数の場合にも複素数の場合にも数字の1をその点で表す。以上で、位置、方向、距離の概念が導入されたので、あとはそれらを基礎に数直線や複素平面(座標)を考える、すなわち、直線と実数、平面と複素数を1対1に対応させる。これで、実数も複素数も秩序づけられ、明瞭に表現されたと言える。ゼロとは何だろうか、それは基準の位置を定めることと発想できるだろう。
― 国家とは何だろうか。国家意思を定める権力機構を定め、国家を動かす基本的な秩序を定めることであると原理を述べることができるだろう。
数直線や複素平面では 基準点、0と1が存在する。これから数学を展開する原理を下記で述べている:

しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:

19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。

複素平面ではさらに大事な点として、純虚数i が存在するが、ゼロ除算の発見で、最近、明確に認識された意外な点は、実数の場合にも、複素数の場合にも、ゼロに対応する点が存在するという発見である。ゼロに対応する点とは何だろうか?
直線や平面で実数や複素数で表されない点が存在するであろうか? 無理して探せば、いずれの場合にも、原点から無限に遠ざかった先が気になるのではないだろうか? そうである立体射影した場合における無限遠点が正しくゼロに対応する点ではないかと発想するだろう。その美しい点は無限遠点としてその美しさと自然さ故に100年を超えて数学界の定説として揺るぐことはなかった。ゼロに対応する点は無限遠点で、1/0=∞ と考えられてきた。オイラー、アーベル、リーマンの流れである。
ところが、ゼロ除算は1/0=0 で、実は無限遠点はゼロに対応していることが確認された。
直線を原点から、どこまでも どこまでも遠ざかって行くと、どこまでも行くが、その先まで行くと(無限遠点)突然、ゼロに戻ることを示している。これが数学であり、我々の空間であると考えられる。この発見で、我々の数学の結構な部分が修正、補充されることが分かりつつある。
ゼロ除算は可能であり、我々の空間の認識を変える必要がある。ゼロで割る多くの公式である意味のある世界が広がってきた。それらが 幾何学、解析学、代数学などと調和して数学が一層美しい世界であることが分かってきた。

全ての直線はある意味で、原点、基準点を通ることが示されるが、これは無限遠点の影が投影されていると解釈され、原点はこの意味で2重性を有している、無限遠点と原点が重なっている現象を表している。この2重性は 基本的な指数関数y=e^x が原点で、0 と1 の2つの値をとると表現される。このことは、今後大きな意味を持ってくるだろう。

古来、ゼロと無限の関係は何か通じていると感じられてきたが、その意味が、明らかになってきていると言える。

2点から無限に遠い点 無限遠点は異なり、無限遠点は基準点原点の指定で定まるとの認識は面白く、大事ではないだろうか。
以 上

再生核研究所声明3392016.12.26)インドの偉大な文化遺産、ゼロ及び算術の発見と仏教

世界史と人類の精神の基礎に想いを致したい。ピタゴラスは 万物は数で出来ている、表されるとして、数学の重要性を述べているが、数学は科学の基礎的な言語である。ユークリッド幾何学の大きな意味にも触れている(再生核研究所声明315(2016.08.08) 世界観を大きく変えた、ユークリッドと幾何学)。しかしながら、数体系がなければ、空間も幾何学も厳密には 表現することもできないであろう。この数体系の基礎はブラーマグプタ(Brahmagupta、598年 – 668年?)インド数学者天文学者によって、628年に、総合的な数理天文書『ブラーマ・スプタ・シッダーンタ』(ब्राह्मस्फुटसिद्धान्त Brāhmasphuṭasiddhānta)の中で与えられ、ゼロの導入と共に四則演算が確立されていた。ゼロの導入、負の数の導入は数学の基礎中の基礎で、西欧世界がゼロの導入を永い間嫌っていた状況を見れば、これらは世界史上でも顕著な事実であると考えられる。最近ゼロ除算は、拡張された割り算、分数の意味で可能で、ゼロで割ればゼロであることが、その大きな影響とともに明らかにされてきた。しかしながら、 ブラーマグプタはその中で 0 ÷ 0 = 0 と定義していたが、奇妙にも1300年を越えて、現在に至っても 永く間違いであるとしてされている。現在でも0 ÷ 0について、幾つかの説が存在していて、現代数学でもそれは、定説として 不定であるとしている。最近の研究の成果で、ブラーマグプタの考えは 実は正しかった ということになる。 しかしながら、一般の ゼロ除算については触れられておらず、永い間の懸案の問題として、世界を賑わしてきた。現在でも議論されている。ゼロ除算の永い歴史と問題は、次のアインシュタインの言葉に象徴される:

Blackholes are where God divided by zero. I don't believe in mathematics. George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist re-
marked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1] 1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
他方、人間存在の根本的な問題四苦八苦(しくはっく)、根本的な苦 四苦
·         愛別離苦(あいべつりく) - 愛する者と別離すること
·         怨憎会苦(おんぞうえく) - 怨み憎んでいる者に会うこと
·         求不得苦(ぐふとくく) - 求める物が得られないこと
·         五蘊盛苦(ごうんじょうく) - 五蘊(人間の肉体と精神)が思うがままにならないこと
の四つの苦に対する人間の在り様の根本を問うた仏教の教えは人類普遍の教えであり、命あるものの共生、共感、共鳴の精神を諭されたと理解される。人生の意義と生きることの基本を真摯に追求された教えと考えられる。アラブや西欧の神の概念に直接基づく宗教とは違った求道者、修行者の昇華された世界を見ることができ、お釈迦様は人類普遍の教えを諭されていると考える。

これら2点は、インドの誠に偉大なる、世界史、人類における文化遺産である。我々はそれらの偉大な文化を尊崇し、数理科学にも世界の問題にも大いに活かして行くべきであると考える。 数理科学においては、十分に発展し、生かされているので、仏教の教えの方は、今後世界的に広められるべきであると考える。仏教はアラブや欧米で考えられるような意味での宗教ではなく、 哲学的、学術的、修行的であり、上記宗教とは対立するものではなく、広く活かせる教えであると考える。世界の世相が悪くなっている折り、仏教は世界を救い、世界に活かせる基本的な精神を有していると考える。
ちなみに、ゼロは 空や無の概念と通じ、仏教の思想とも深く関わっていることに言及して置きたい。 いみじくも高度に発展した物理学はそのようなレベルに達していると報じられている。この観点で、歴史的に永い間、ゼロ自身の西欧社会への導入が異常に遅れていた事実と経過は 大いに気になるところである。

以 上


再生核研究所声明3532017.2.2) ゼロ除算 記念日

2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは

再生核研究所声明 148(2014.2.12): 100/0=0,  0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志

で、最新のは

Announcement 352 (2017.2.2):  On the third birthday of the division by zero z/0=0 

である。
アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。
心すべき要点を纏めて置きたい。

1)     ゼロの明確な発見と算術の確立者Brahmagupta (598 - 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。
2)     予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。
3)     ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。
4)     この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。
5)     いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。
6)     ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。
以 上

追記:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf


再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

http://ameblo.jp/syoshinoris/theme-10006253398.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12272721615.html

№541-940

№541-940

NEW !
テーマ:
№541-940

抗力が働いた場合に、止まるまでの時間と距離を求める公式ですが、n=1の場合、従来は対数極のために発散となってしまいますが、ゼロ除算算法によれば、有限の値が出るのですが、何か意味がないでしょうか? 問題です。説明が付けば、積分論に大きな影響を与えます。

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1
-16. 

Relations of 0 and infinity
Hiroshi Okumura, Saburou Saitoh and Tsutomu Matsuura:
http://www.e-jikei.org/…/Camera%20ready%20manuscript_JTSS_A…

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf  Announcement 352:   On the third birthday of the division by zero z/0=0 \\
(2017.2.2)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
 }
\date{\today}
\maketitle
{\bf Abstract: } In this announcement, for its importance we would like to state the
situation on the division by zero and propose basic new challenges to education and research on our wrong world history of the division by zero.

\bigskip
\section{Introduction}
%\label{sect1}
By a {\bf natural extension} of the fractions
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$
\begin{equation}
\frac{b}{0}=0,
\end{equation}
incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the  case of real numbers.

 The division by zero has a long and mysterious story over the world (see, for example,  H. G. Romig \cite{romig} and Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628.  In particular, note that Brahmagupta (598 -
 668 ?) established the four arithmetic operations by introducing $0$ and at the same time he defined as $0/0=0$ in Brāhmasphuṭasiddhānta.  Our world history, however, stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable. However, we do not know the meaning and motivation of  the definition of $0/0=0$, furthermore, for the important case $1/0$ we do not know any result there. However,
  Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

 \bigskip

 {\bf  Proposition 1. }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying
$$
F (b, a)F (c, d)= F (bc, ad)
$$
for all
$$
a, b, c, d  \in {\bf C }
$$
and
$$
F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $
$$
F (b, 0) = 0.
$$
}

 Note that the complete proof of this proposition is simply given by  2 or 3 lines.
We {\bf should  define $F(b,0)= b/0 =0$}, in general.

\medskip
We thus should consider, for any complex number $b$, as  (1.2);
that is, for the mapping
\begin{equation}
W = \frac{1}{z},
\end{equation}
the image of $z=0$ is $W=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the  point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

  For Proposition 1, we see some confusion even among mathematicians;  for the elementary function (1.3), we did not consider the value at $z=0$, and we were not able to consider a value. Many and many people consider its value by the limiting like $+\infty$, $-\infty$ or the point at infinity as $\infty$. However, their basic idea comes from {\bf continuity} with the common sense or based on the basic idea of Aristotle. However, by the division by zero (1.2) we will consider its value of the function $W = \frac{1}{z}$ as zero at $z=0$. We would like to consider the value so. We will see that this new definition is valid widely in mathematics and mathematical sciences. However, for functions, we will need some modification {\bf  by the idea of the division by zero calculus } as in stated in the sequel.

Meanwhile, the division by zero (1.2) is clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

\medskip
1) by the generalization of the fractions by the Tikhonov regularization and by the Moore-Penrose generalized inverse,

\medskip
2) by the intuitive meaning of the fractions (division) by H. Michiwaki - repeated subtraction method,

\medskip
3) by the unique extension of the fractions by S. Takahasi,   as in the above,

\medskip
4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from  ${\bf C}$ onto ${\bf C}$,

\medskip
and

\medskip

5) by considering the values of functions with the mean values of functions.
\medskip

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

\medskip

\medskip
A) a field structure  containing the division by zero --- the Yamada field ${\bf Y}$,

\medskip
B)  by the gradient of the $y$ axis on the $(x,y)$ plane --- $\tan \frac{\pi}{2} =0$,
\medskip

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane --- the reflection point of zero is zero, not the point at infinity.
\medskip

and
\medskip

D) by considering rotation of a right circular cone having some very interesting
phenomenon  from some practical and physical problem.

\medskip

In (\cite{mos}),  many division by zero results in Euclidean spaces are given and  the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

\medskip

See  J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht}  and J. A. Bergstra \cite{berg} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their papers.

Meanwhile,  J. P.  Barukcic and I.  Barukcic (\cite{bb}) discussed  the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

 Furthermore,  T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero.

 Meanwhile, we should refer to up-to-date information:

{\it Riemann Hypothesis Addendum - Breakthrough

Kurt Arbenz
https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum -   Breakthrough.}

\medskip

Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life}:
 Gamow, G., My World Line (Viking, New York). p 44, 1970.

 Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1.  Note  its very general assumptions and  many fundamental evidences in our world in (\cite{kmsy,msy,mos,s16}). The results will give great impacts  on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and  physical problems.

The mysterious history of the division by zero over one thousand years is a great shame of  mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical  symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful,  and will give great impacts to our basic ideas on the universe.

 For our ideas on the division by zero, see the survey style announcements.

\section{Basic Materials of Mathematics}

\medskip

  (1): First, we should declare that the divison by zero is {\bf possible in the natural and uniquley determined sense and its importance}.

  (2): In the elementary school, we should introduce the concept of division (fractions) by the idea of repeated subtraction method by H. Michiwaki whoes method is applied in computer algorithm and in old days for calculation of division. This method will give a simple and clear method for calculation of division and students will be happy to apply this simple method at the first stage. At this time, they will be able to understand that the division by zero is clear and trivial as $a/0=0$ for any $a$. Note that Michiwaki knows how to apply his method to the complex number field.

  (3): For the introduction of the elemetary function $y= 1/x$, we should give the definition of the function at the origin $x=0$ as $y = 0$ by the division by zero idea and we should apply this definition for the occasions of its appearences, step by step, following the curriculum and the results of the division by zero.

  (4): For the idea of the Euclidean space (plane), we should introduce, at the first stage, the concept of stereographic projection and the concept of the point at infinity  -
   one point compactification. Then, we will be able to see the whole Euclidean plane, however, by the division by zero, {\bf the point at infinity is represented by zero, not by $\infty$}. We can teach  the very important fact with many geometric and analytic geometry methods. These topics will give great pleasant feelings to many students.
  Interesting topics are: parallel lines, what is a line? - a line contains the origin as an isolated
point for the case that the native line does not through the origin. All the lines pass the origin, our space is not the Eulcildean space and is not Aristoteles for the strong discontinuity at the point at infinity (at the origin). - Here note that an orthogonal coordinate system should be fixed first for our all arguments.

(5): The inversion of the origin with respect to a circle with center the origin is the origin itself, not the point at infinity - the very classical result is wrong. We can also prove this elementary result by many elementary ways.

(6): We should change the concept of gradients; on the usual orthogonal coordinates $(x,y)$,
 the gradient of the $y$ axis is zero; this is given and proved by the fundamental result
 $\tan (\pi/2) =0$. The result is also trivial from the definition of the Yamada field.
\medskip
For the Fourier coefficients $a_k$ of a function :
$$
\frac{a_k \pi k^3}{4}
$$
\begin{equation}
 = \sin (\pi k) \cos (\pi k) + 2 k^2 \pi^2 \sin(\pi k) \cos (\pi k) + 2\pi (\cos (\pi k) )^2 - \pi k,
\end{equation}
for $k=0$, we obtain immediately
\begin{equation}
a_0  = \frac{8}{3}\pi^2
\end{equation}
(see \cite{maple}, (3.4))({ -
 Difficulty in Maple for specialization problems}
).
\medskip

These results are derived also from  the {\bf division by zero calculus}:
 For any formal Laurent expansion around $z=a$,
\begin{equation}
f(z) = \sum_{n=-\infty}^{\infty} C_n (z - a)^n,
\end{equation}
we obtain the identity, by the division by zero

\begin{equation}
f(a) =  C_0.
\end{equation}
\medskip

The typical example is that, as we can derive by the elementary way,
$$
\tan \frac{\pi}{2} =0.
$$
\medskip

We gave  many examples with geometric meanings in \cite{mos}.

This fundamental result leads to the important new definition:
From the viewpoint of the division by zero, when there exists the limit, at $ x$
 \begin{equation}
 f^\prime(x) = \lim_{h\to 0} \frac{f(x + h) - f(x)}{h}  =\infty
 \end{equation}
 or
 \begin{equation}
 f^\prime(x) =  -\infty,
 \end{equation}
 both cases, we can write them as follows:
 \begin{equation}
  f^\prime(x) =  0.
 \end{equation}
 \medskip

 For the elementary ordinary differential equation
 \begin{equation}
 y^\prime = \frac{dy}{dx} =\frac{1}{x}, \quad x > 0,
 \end{equation}
 how will be the case at the point $x = 0$? From its general solution, with a general constant $C$
 \begin{equation}
 y = \log x + C,
 \end{equation}
 we see that, by the division by zero,
 \begin{equation}
 y^\prime (0)= \left[ \frac{1}{x}\right]_{x=0} = 0,
 \end{equation}
 that will mean that the division by zero (1.2) is very natural.

 In addition, note that the function $y = \log x$ has infinite order derivatives and all the values are zero at the origin, in the sense of the division by zero.

 However, for the derivative of the function $y = \log x$, we have to fix the sense at the origin, clearly, because the function is not differentiable, but it has a singularity at the origin. For $x >0$, there is no problem for (2.8) and (2.9). At  $x = 0$, we  see that we can not consider the limit in the sense (2.5).  However,  for $x >0$ we have (2.8) and
 \begin{equation}
 \lim_{x \to +0} \left(\log x \right)^\prime = +\infty.
 \end{equation}
 In the usual sense, the limit is $+\infty$,  but in the present case, in the sense of the division by zero, we have:
 \begin{equation}
 \left[ \left(\log x \right)^\prime \right]_{x=0}= 0
 \end{equation}
  and we will be able to understand its sense graphycally.

 By the new interpretation for the derivative, we can arrange many formulas for derivatives, by the division by zero. We can modify many formulas and statements in calculus and we can apply our concept to the differential equation theory and the universe in connetion with derivatives.

(7): We shall introduce the typical division by zero calculus.

  For the integral
\begin{equation}
\int x(x^{2}+1)^{a}dx=\frac{(x^{2}+1)^{a+1}}{2(a+1)}\quad(a\ne-1),
\end{equation}
we obtain, by the division by zero calculus,
\begin{equation}
\int x(x^{2}+1)^{-1}dx=\frac{\log(x^{2}+1)}{2}.
\end{equation}

For example, in the ordinary differential equation
\begin{equation}
y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{- 3x},
\end{equation}
in order to look for a special solution, by setting $y = A e^{kx}$ we have, from
\begin{equation}
y^{\prime\prime} + 4 y^{\prime} + 3 y = 5 e^{kx},
\end{equation}
\begin{equation}
y = \frac{5 e^{kx}}{k^2 + 4 k + 3}.
\end{equation}
For $k = -3$, by the division by zero calculus, we obtain
\begin{equation}
y = e^{-3x} \left( - \frac{5}{2}x -  \frac{5}{4}\right),
\end{equation}
and so, we can obtain the special solution
\begin{equation}
y = - \frac{5}{2}x e^{-3x}.
\end{equation}

In those examples, we were able to give valuable functions for denominator zero cases. The division by zero calculus may be applied to many cases as a new fundamental calculus over l'Hopital's rule.

(8):  When we apply the division by zero to functions, we can consider, in general, many ways.  For example,
for the function $z/(z-1)$, when we insert $z=1$  in numerator and denominator, we have
\begin{equation}
\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.
\end{equation}
However,
from the identity --
 the Laurent expansion around $z=1$,
\begin{equation}
\frac{z}{z-1} = \frac{1}{z-1} + 1,
\end{equation}
we have
\begin{equation}
 \left[\frac{z}{z-1}\right]_{z = 1} = 1.
 \end{equation}
 For analytic functions we can give uniquely determined values at isolated singular points by the values by means of the Laurent expansions as the division by zero calculus, however, the values by means of the Laurent expansions are not always reasonable. We will need to consider many interpretations for reasonable values. In many formulas in mathematics and physics, however, we can see that the division by zero calculus is reasonably valid. See \cite{kmsy,msy}.

\section{Albert Einstein's biggest blunder}
The division by zero is directly related to the Einstein's theory and various
physical problems
containing the division by zero.  Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

Note that the Big Bang also may be related to the division by zero like the blackholes.

\section{Computer systems}
The above Professors listed are wishing the contributions in order to avoid the division by zero trouble in computers. Now,  we should arrange  new computer systems in order not to meet the division by zero trouble in computer systems.

 By the division by zero calculus, we will be able to overcome troubles in Maple for specialization problems as in stated.

\section{General  ideas on the universe}
The division by zero may be related to religion, philosophy and the ideas on the universe; it will create a new world. Look at the new world introduced.

\bigskip

We are standing on a new  generation and in front of the new world, as in the discovery of the Americas.  Should we push the research and education on the division by zero?

 \bigskip

 \section{\bf Fundamental open problem}

 {\bf Fundamental open problem}:  {\it Give the definition of the division by zero calculus for several -variables functions with singularities.}

 \medskip

 In order to make clear the problem, we  give a prototype example.
  We have the identity by the divison by zero calculus: For

  \begin{equation}
  f(z) = \frac{1 + z}{1- z}, \quad f(1) = -1.
  \end{equation}
  From the real part and imaginary part of the function, we have, for $ z= x +iy$
   \begin{equation}
  \frac{1 - x^2 - y^2}{(1 - x)^2 + y^2} =-1,   \quad \text{at}\quad (1,0)
  \end{equation}
  and
   \begin{equation}
  \frac{y}{(1- x)^2 + y^2} = 0, \quad  \text{at}\quad (1,0),
  \end{equation}
  respectively.  Why the differences do happen?   In general, we are interested in the above open problem. Recall our definition for the division by zero calculus.

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{bb}
J. P.  Barukcic and I.  Barukcic, Anti Aristotle -
 The Division of Zero by Zero. Journal of Applied Mathematics and Physics,  {\bf 4}(2016), 749-761.
doi: 10.4236/jamp.2016.44085.

\bibitem{bht}
J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

\bibitem{berg}
J.A. Bergstra, Conditional Values in Signed Meadow Based Axiomatic Probability Calculus,
arXiv:1609.02812v2[math.LO] 17 Sep 2016.


\bibitem{cs}
L. P.  Castro and S. Saitoh,  Fractional functions and their representations,  Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
H. Michiwaki, S. Saitoh,  and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{ms}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$, Advances in Linear Algebra
\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt 

\bibitem{mos}
H.  Michiwaki, H. Okumura, and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces.
 International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 

\bibitem{ra}
T. S. Reis and J.A.D.W. Anderson,
Transdifferential and Transintegral Calculus,
Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

\bibitem{ra2}
T. S. Reis and J.A.D.W. Anderson,
Transreal Calculus,
IAENG  International J. of Applied Math., {\bf 45}(2015):  IJAM 45 1 06.

\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.


\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

\bibitem{maple}
Introduction to Maple - UBC Mathematics
https://www.math.ubc.ca/~israel/m210/lesson1.pdf

\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? -  the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

\bibitem{ann293}
Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

\bibitem{ann300}
Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

\bibitem{ann326}
 Announcement 326 (2016.10.17): The division by zero z/0=0 - its impact to human beings through education and research.

\end{thebibliography}

\end{document}

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf  Announcement 362:   Discovery of the division by zero as \\
$0/0=1/0=z/0=0$\\
(2017.5.5)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
 }
\date{\today}
\maketitle
{\bf Statement: }  The Institute of Reproducing Kernels declares that the division by zero was discovered as $0/0=1/0=z/0=0$ in a natural sense on 2014.2.2. The result shows a new basic idea on the universe and space since Aristotelēs (BC384 - BC322) and Euclid (BC 3 Century - ), and the division by zero is since Brahmagupta  (598 - 668 ?).
In particular,  Brahmagupta defined as $0/0=0$ in Brāhmasphuṭasiddhānta (628), however, our world history stated that his definition $0/0=0$ is wrong over 1300 years, but, we will see that his definition is suitable.

For the details, see the references and the site: http://okmr.yamatoblog.net/


\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
H. Michiwaki, S. Saitoh,  and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{ms}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$, Advances in Linear Algebra
\& Matrix Theory, 6 (2016), 51-58. http://dx.doi.org/10.4236/alamt.2016.62007 http://www.scirp.org/journal/alamt 

\bibitem{mos}
H.  Michiwaki, H. Okumura, and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces.
 International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 

\bibitem{osm}
H. Okumura, S. Saitoh and T. Matsuura, Relations of   $0$ and  $\infty$,
Journal of Technology and Social Science (JTSS), 1(2017),  70-77.

\bibitem{romig}
H. G. Romig, Discussions: Early History of Division by Zero,
American Mathematical Monthly, Vol. 31, No. 8. (Oct., 1924), pp. 387-389.

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{s16}
S. Saitoh, A reproducing kernel theory with some general applications,
Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics,  {\bf 177}(2016), 151-182 (Springer).

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.

\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? -  the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281 (2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282 (2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

\bibitem{ann293}
Announcement 293 (2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

\bibitem{ann300}
Announcement 300 (2016.05.22): New challenges on the division by zero z/0=0.

\bibitem{ann326}
 Announcement 326 (2016.10.17): The division by zero z/0=0 - its impact to human beings through education and research.

 \bibitem{ann352}
Announcement 352(2017.2.2):   On the third birthday of the division by zero z/0=0.

\bibitem{ann354}
Announcement 354(2017.2.8): What are $n = 2,1,0$ regular polygons inscribed in a disc? -- relations of $0$ and infinity.




\end{thebibliography}

\end{document}



再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

http://ameblo.jp/syoshinoris/theme-10006253398.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12272721615.html