2016年10月15日土曜日

ピタゴラスの定理(ピタゴラスのていり、英: Pythagorean theorem)は

ピタゴラスの定理(ピタゴラスのていり、: Pythagorean theorem)は、直角三角形の3の長さの関係を表す等式である。三平方の定理(さんへいほうのていり)、勾股弦の定理(こうこげんのていり)とも呼ばれる。
平面幾何学において直角三角形斜辺の長さを c、他の2辺の長さを ab とすると、
{\displaystyle c^{2}=a^{2}+b^{2}}
が成り立つという定理である[1][2][3]
ピタゴラスの定理によって、直角三角形をなす3辺の内、2辺の長さを知ることができれば、残りの1辺の長さを知ることができる。例えば、直交座標系において原点と任意の点を結ぶ線分の長さは、ピタゴラスの定理に従って、その点の座標成分を2乗したものの総和として表すことができる[注 1]。このことは2次元の座標系に限らず、3次元の系やより大きな次元の系についても成り立つ。この事実から、ピタゴラスの定理を用いて任意の2点の間の距離を測ることができる。このようにして導入される距離はユークリッド距離と呼ばれる。
ピタゴラス直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」など幾つかの逸話が知られているものの、この定理はピタゴラスが発見したかどうかは分からない。バビロニア数学プリンプトン322古代エジプト[4]などでもピタゴラス数については知られていたが、彼らが定理を発見していたかどうかは定かではない。
中国古代の数学書『九章算術』や『周髀算経』でもこの定理が取り上げられている。中国ではこの定理を勾股定理商高定理等と呼び、日本の和算でも中国での名称を用いて鉤股弦の法(こうこげんのほう)等と呼んだ[5]三平方の定理という名称は、敵性語が禁じられていた第二次世界大戦中に文部省の図書監修官であった塩野直道の依頼を受けて、数学者末綱恕一が命名したものである[6]
a2 + b2 = c2 を満たす自然数の組 (abc) をピタゴラス数またはピタゴラスの三つ組数 (Pythagorean triple) という。特に、abc が互いに素であるピタゴラス数 (abc) を原始的 (primitive) あるいは (prime) であるといい、そのようなピタゴラス数は原始ピタゴラス数 (primitive Pythagorean triple) などと呼ばれる。全てのピタゴラス数は、原始ピタゴラス数の正の整数倍により得られる。
ピタゴラス数 (abc) が原始的であるためには、3つのうち2つが互いに素であることが必要十分である。

ピタゴラス数の性質[編集]

2つの整数mとn(m>n≧1)を基にピタゴラス数(a,b,c)を生成できることを示した図。単一の黄色の長方形および正方形の面積はいずれも{\displaystyle m^{2}n^{2}}となっている。
色付きの正方形群で三辺の長さが整数の直角三角形を表した例。正方形の合計数は図中右上のように1つの長方形内に余白なく収まるものとなっている。
ピタゴラス数を面積及び長さの比で表した図。青は{\displaystyle m^{2}-n^{2}}、緑は{\displaystyle 2mn}、赤は{\displaystyle m^{2}+n^{2}}を表現している。右上の矢印の先で青の長方形の右の辺の延長線並びに赤と青の円弧が交差していることで、面積及び長さの比が直角三角形の三辺の比として成り立っていることが確認できる。
数1に相当する長さを定めた上でピタゴラス数の関係を長さで表した図。ピタゴラス数を表現する長さが直角三角形(桃色)の三辺として成り立っていることが確認できる。(赤矢印が示す交点一致)
自然数の組 (abc) が原始ピタゴラス数であるためには、ある自然数 mn が
  • m と n は互いに素
  • m > n
  • m − n は奇数
を満たすとして、
(abc) = (m2 − n2, 2mnm2 + n2) or (2mnm2 − n2m2 + n2)
であることが必要十分である。上記の (mn) は無数に存在し、2mn は重複しないから、原始ピタゴラス数は無数に存在する。これにより、すべての原始ピタゴラス数を重複なく見つけ出すことができる。
例えば
(mn) = (2, 1) のとき (abc) = (3, 4, 5)
(mn) = (3, 2) のとき (abc) = (5, 12, 13)
(mn) = (4, 1) のとき (abc) = (8, 15, 17)
である。
原始ピタゴラス数 (abc) について、次のような性質も成り立つ。
  • a または b は 4 の倍数
  • a または b は 3 の倍数
  • a または b または c は 5 の倍数
また、一般のピタゴラス数 (abc) に対して、S = 12ab(直角三角形の面積)は平方数でない。

直角三角形の三辺の長さを整数とするための調整[編集]


直角三角形の三辺の長さを整数とするための調整の図
直角三角形の三辺の長さを整数とするための調整の図において、赤の正方形の面積から青の正方形の面積を差し引いた残りの面積を互いに合同な黄の長方形4枚で占めている。
黄の長方形の長辺と短辺の長さが整数であれば、
  • 赤の正方形の辺の長さは黄の長方形の長辺と短辺の和
  • 青の正方形の辺の長さは黄の長方形の長辺と短辺の差
となり、いずれも整数として表せることになる。
また、黄の長方形の面積を整数の二乗で表せれば、黄の長方形4枚分の面積に等しい緑の正方形の辺の長さも整数で表すことができる。
なおかつ、二つの正方形(緑と青)の面積の和が別の正方形(赤)の面積となることにもなり、この場合、三つの正方形の各辺の長さを用いて直角三角形(桃色)を作れることになる。
ただし、黄の長方形は当然正方形となってはならず(長辺と短辺の差によって青の正方形を作る必要がある)、互いに異なりながらその積が整数の二乗となる2つの数を黄の長方形の幅と高さに割り当てる必要がある。
それを実現する方法の一つとして、黄の長方形の幅と高さをそれぞれ異なる整数の二乗とする方法がある。
図では、数1の長さを定めた上で整数m,n(m>n≧1)の長さも設定し、それぞれの二乗を黄の長方形の辺の長さにしている。
(緑の正方形の辺の長さは {\displaystyle 4m^{2}n^{2}} の正の平方根 {\displaystyle 2mn} となる。)
青、緑、赤の各正方形の辺の長さをa,b,cとすると、
  • {\displaystyle a=m^{2}-n^{2}}
  • {\displaystyle b=2mn}
  • {\displaystyle c=m^{2}+n^{2}}
となり、それぞれ整数であり、{\displaystyle a^{2}+b^{2}=c^{2}} が成り立つので、a,b,cを三辺の長さとする三角形(桃色)は直角三角形となる。

Jesmanowicz 予想[編集]

1956年に Jesmanowicz が以下の予想を提出した。
(abc) を原始ピタゴラス数、n を自然数とする。xyz が
{\displaystyle (an)^{x}+(bn)^{y}=(cn)^{z}}
で自然数解を持つには、
{\displaystyle x=y=z=2}
ピタゴラスの定理みたく、基本的、ファンダメンタル

再生核研究所声明325(2016.10.14) ゼロ除算の状況について ー 研究・教育活動への参加を求めて
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における初歩的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の初歩的な部分の期待される変更 かつて無かった事である。ユークリッドの考えた空間と解析幾何学などで述べられる我々の空間は実は違っていた。いわゆる非ユークリッド空間とも違う空間が現れた。不思議な飛び、ワープ現象が起きている世界である。ゼロと無限の不思議な関係を述べている。これが我々の空間であると考えられる。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、ゼロ除算の教育、研究は日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の協力、参加をお願いしたい。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。数学はより美しく、完全であった。さらに、数学の奥深い世界を示している。ゼロ除算を含む体の構造、山田体が確立している。その考えは、殆ど当たり前の従来の演算の修正であるが、分数における考え方に新規で重要、面白い、概念がある。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童・生徒たちにも歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。応用する。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直交座標系で y軸の勾配はゼロであること。真無限における破壊現象接線などの新しい性質解析幾何学との美しい関係と調和すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること行列式と破壊現象の美しい関係など。三角関数や初等関数でも考え方を修正、補充する。直線とは、そもそも、従来の直線に原点を加えたもので、平行線の公理は実は成り立たず、我々の世界は、ユークリッド空間でも、いわゆる非ユークリッド幾何学でもない、新しい空間である。原点は、あらゆる直線の中心になっている。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の発展の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し ― ゼロ除算算法、広範な応用を展開する。最も顕著な例は、tan 90度 の値がゼロであることで、いろいろ幾何学的な説明は、我々の空間の認識を変えるのに教育的で楽しい題材である。特に微分係数が正や負の無限大に収束(発散)する時微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。新しい、関数の素性が見えてくる。
複素解析学において 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点自身では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学的な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円に関する鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考え方の修正は、ユークリッド以来、我々の空間に対する認識の世界史上における大きな変更であり、数学を越えた世界観の変更を意味している。これはアリストテレスの世界の連続性の概念を変えるもので強力な不連続性を示している。 ― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響があり、さらに哲学、宗教、文化への大きな影響がある。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、数学者ばかりではなく、人類の名誉にも関わることである。実際、ゼロ除算の歴史は 止むことのない闘争の歴史とともに人類の恥ずべき人類の愚かさの象徴となるだろう。世間ではゼロ除算について不適切な情報が溢れていて 今尚奇怪で抽象的な議論によって混乱していると言える。― 美しい世界が拓けているのに、誰がそれを閉ざそうと、隠したいと、無視したいと考えられるだろうか。我々は間違いを含む、不適切な数学を教えていると言える: ― 再生核研究所声明 41: 世界史、大義、評価、神、最後の審判 ―。
地動説のように真実は、実体は既に明らかである。 ― 研究と研究成果の活用の推進を 大きな夢を懐きながら 要請したい。 研究課題は基礎的で関与する分野は広い、いろいろな方の研究・教育活動への参加を求めたい。素人でも数学の研究に参加できる新しい初歩的な数学を沢山含んでいる。ゼロ除算は発展中の世界史上の事件、問題であると言える。
以 上
追記:
*156  Qian,T./Rodino,L.(eds.): Mathematical Analysis, Probability and
 Applications -Plenary Lectures: Isaac 2015, Macau, China.
 (Springer Proceedings in Mathematics and Statistics, Vol. 177)  Sep. 2016 305 pp.            (Springer)
Paper:Division by Zero z/0 = 0 in Euclidean Spaces
Dear Prof. Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
With reference to above, The Editor-in-Chief IJMC (Prof. Haydar Akca) accepted the your paper after getting positive and supporting respond from the reviewer.
Now, we inform you that your paper is accepted for next issue ofInternational Journal of Mathematics and Computation 9 Vol. 28; Issue  1, 2017),
数学基礎学力研究会のホームページ
URL

0 件のコメント:

コメントを投稿