2016年10月16日日曜日

野老朝雄の新東京五輪エンブレム

野老朝雄の新東京五輪エンブレム

/あれが野老の作品となると、話はまったく違う。あれは単独でエンブレムとして成り立っているだけでなく、平面も空間も埋め尽くす圧倒的な展開力を秘めている。
日本が世界に誇るべき江戸時代の高度な幾何算術「和算」の美だ。/
 ようやく東京五輪エンブレムが決まったとか。野老朝雄。言われてようやく、ああ、そうか、と、この作品のすごさが、改めて、いろいろ見えてきた。平野敬子が当初からケチをつけていたせいで(などと、人のせいにしてはいかんな。ようは私がまだまだ勉強不足なだけ)、てっきり先の次点の原研哉の作品だと思い込んでいた。だが、野老のものとなると、話はまったく違う。単独のこじゃれたエンブレムとして成り立っているだけではない。市松のメイソン趣味も納得がいく。野老氏の作品は、梅田などにもある。みんな踏みつけていて、気づかない。それくらい空間にうまく溶け込んでいる。

 アドビのイラストレーターというソフトのせいで、最近のデザイナーは、猫も杓子もみんなやたらベジェ曲線ばかりをつかう。端点とアンテナをいじると、きれいな曲線がかんたんに描ける。たしかにきれいなのだが、それは方程式の高次解から導き出されるもので、もちろんそんなもん、人手で書けるわけがない。デザイナーが描いているというより、ソフトが描いていると言った方がいい。

 一方、建築出身の野老。定規とコンパス。およそ3層くらいまでの構成で、とてつもない多種多様な図形を吐き出させる。日本が世界に誇るべき江戸時代の高度な幾何算術「和算」の美。ちょうど先日、風狸けんのマンガ『和算に恋した少女』を読んでいたところだ。『天使と悪魔』や『トカゲ』で有名なだまし絵のエッシャーなんかも、同じ技法を使っている。単純な幾何図形の奥底に、まだまだ多くの可能性が秘められていることを思い出させる。それは、それらがつながったときにこそ、はじめてそこに現れてくる大きな力だ。

 藍一色で地味、というが、逆にそれは何色にへんげしてもよいということ。あの構造まで理解していないが、隠された扇が輪になって平面や空間を無限に埋め尽くす能力があるのではないかと思う。先の選定で決め手とされた、展開力、という意味では、彼の作品、彼の能力は、佐野をはるかに凌ぐ。たとえば、ちょっとコピペをしただけでも、こうなる。おそらく彼が提出した素案には、もっとすごいアイディアが満載されていたのだろう。これから、我々を驚かせてくれることを大いに期待している。

 正直なところ、このエンブレム、はなからオリンピックは関係あるまい。厳しい言い方になるが、野老氏の作品は、もともとどれも無機的で、オリンピック、パラリンピックの根幹となるべき人間味、ヒューマニズム、命の力が無い。世間では早くも、葬儀の黒い花輪、と揶揄している。それももっともな話だ。生きた人間のいない数学的天上世界で、ただ永劫循環するだけの機械時計。エンブレム委員会は、オリンピックの求心力となる世界の心のシンボルを選ぶべきなのに、また愚かしく単純なデザインのコンテストをやってしまった。オープンではない審査員の恣意的人選という根本的な問題が、最後になって結果に影響してしまった。世間の人々の心が離れていってしまうエンブレムが、良いエンブレムなわけがない。http://www.insightnow.jp/article/9227

とても興味深い:
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf  Announcement 300:  New challenges on the division by zero z/0=0\\
(2016.05.22)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
%\date{\today}
\maketitle
{\bf Abstract: } In this announcement, for its importance we would like to state the
situation on the division by zero and propose basic new challenges.
\bigskip
\section{Introduction}
%\label{sect1}
By a {\bf natural extension} of the fractions
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$
\begin{equation}
\frac{b}{0}=0,
\end{equation}
incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the  case of real numbers.
 The division by zero has a long and mysterious story over the world (see, for example, Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628,  however,
  Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):
 
 \bigskip
 {\bf  Proposition 1. }{\it Let F be a function from  ${\bf C }\times {\bf C }$  to ${\bf C }$ satisfying
$$
F (b, a)F (c, d)= F (bc, ad)
$$
for all
$$
a, b, c, d  \in {\bf C }
$$
and
$$
F (b, a) = \frac {b}{a },  \quad   a, b  \in  {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $
$$
F (b, 0) = 0.
$$
}
 Note that the complete proof of this proposition is simply given by  2 or 3 lines.
\medskip
We thus should consider, for any complex number $b$, as  (1.2);
that is, for the mapping
\begin{equation}
w = \frac{1}{z},
\end{equation}
the image of $z=0$ is $w=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the  point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.
However, the division by zero (1.2) is now clear, indeed, for the introduction of (1.2), we have several independent approaches as in:
\medskip
1) by the generalization of the fractions by the Tikhonov regularization or by the Moore-Penrose generalized inverse, 
\medskip
2) by the intuitive meaning of the fractions (division) by H. Michiwaki,
\medskip
3) by the unique extension of the fractions by S. Takahasi,   as in the above,
\medskip
4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from  ${\bf C}$ onto ${\bf C}$, 
\medskip
and
\medskip
5) by considering the values of functions with the mean values of functions.
\medskip
Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:
\medskip
\medskip
A) a field structure  containing the division by zero --- the Yamada field ${\bf Y}$,
\medskip
B)  by the gradient of the $y$ axis on the $(x,y)$ plane --- $\tan \frac{\pi}{2} =0$,
\medskip
C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane --- the reflection point of zero is zero,
\medskip
and
\medskip
D) by considering rotation of a right circular cone having some very interesting
phenomenon  from some practical and physical problem.
\medskip
In (\cite{mos}),  many division by zero results in Euclidean spaces are given and  the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.
\medskip
See  J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their paper.
Meanwhile,  J. P.  Barukcic and I.  Barukcic (\cite{bb}) discussed recently the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.
 Furthermore,  T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero $0/0$.

 Meanwhile, we should refer to up-to-date information:

{\it Riemann Hypothesis Addendum - Breakthrough
Kurt Arbenz
https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum -   Breakthrough.}
\medskip
Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

 For our ideas on the division by zero, see the survey style announcements 179,185,237,246,247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252,ann293}).
\section{On mathematics}
Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1.  Note  its very general assumptions and  many fundamental evidences in our world in (\cite{kmsy,msy,mos}). The results will give great impacts  on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and  physical problems. See our announcements for the details.
The mysterious history of the division by zero over one thousand years is a great shame of  mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical  symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.
We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful,  and will give great impacts to our basic ideas on the universe.
\section{Albert Einstein's biggest blunder}
The division by zero is directly related to the Einstein's theory and various
physical problems
containing the division by zero.  Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.
\section{Computer systems}
The above Professors listed are wishing the contributions in order to avoid the zero division trouble in computers. Now,  we should arrange  new computer systems in order not to meet the division by zero trouble in computer systems.
\section{General  ideas on the universe}
The division by zero may be related to religion,  philosophy and the ideas on the universe, and it will creat a new world. Look the new world.
\bigskip
We are standing on a new  generation and in front of the new world, as in the discovery of the Americas.
 \bigskip

\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{bb}
J. P.  Barukcic and I.  Barukcic, Anti Aristotle—The Division of Zero by Zero. Journal of Applied Mathematics and Physics,  {\bf 4}(2016), 749-761.
doi: 10.4236/jamp.2016.44085.
\bibitem{bht}
J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).
\bibitem{cs}
L. P.  Castro and S. Saitoh,  Fractional functions and their representations,  Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063. 
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math.  {\bf 27} (2014), no 2, pp. 191-198,  DOI: 10.12732/ijam.v27i2.9.
\bibitem{ms}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$,
Linear Algebra \& Matrix Theory (ALAMT)(to appear).
\bibitem{msy}
H. Michiwaki, S. Saitoh,  and  M.Yamada,
Reality of the division by zero $z/0=0$.  IJAPM  International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html
\bibitem{mos}
H.  Michiwaki, H. Okumura, and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces.
 International Journal of Mathematics and Computation
 (in press).
\bibitem{ra}
T. S. Reis and J.A.D.W. Anderson,
Transdifferential and Transintegral Calculus,
Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA
\bibitem{ra2}
T. S. Reis and J.A.D.W. Anderson,
Transreal Calculus,
IAENG  International J. of Applied Math., {\bf 45}(2015):  IJAM 45 1 06.
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices,  Advances in Linear Algebra \& Matrix Theory.  {\bf 4}  (2014), no. 2,  87--95. http://www.scirp.org/journal/ALAMT/ 
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi,  Classification of continuous fractional binary operations on the real and complex fields,  Tokyo Journal of Mathematics,   {\bf 38}(2015), no. 2, 369-380.
\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.
\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.
\bibitem{ann237}
Announcement 237 (2015.6.18):  A reality of the division by zero $z/0=0$ by  geometrical optics.
\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.
\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.
\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? -  the Yamada field containing the division by zero $z/0=0$.
\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.
\bibitem{ann281}
Announcement 281(2016.2.1): The importance of the division by zero $z/0=0$.
\bibitem{ann282}
Announcement 282(2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.
\bibitem{ann293}
Announcement 293(2016.3.27):  Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.
\end{thebibliography}
\end{document}

0 件のコメント:

コメントを投稿