2015年5月27日水曜日

ここは3次元の世界と言われることがあるけど、本来は0次元なんじゃないでしょうかね。

ここは3次元の世界と言われることがあるけど、本来は0次元なんじゃないでしょうかね。
本かテレビの発明によって、2次元とゆう概念が生まれ、派生的に3次元が生まれたのではないでしょう
か。
補足
それか、それ以前に「こちら」と「あちら」などと位置付けることで3次元、2次元が生じた。
しかし、「こちら」や「あちら」と位置付けをしなければ、どこまでも連なっていて、無限であり、無限とは「無」や「空」であり、敢えて数値で表せば0であります。
しかし、このように位置付けることで空間(距離)が生まれ、そして数字が生まれ、時間も生まれたのではないかと思う。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q11146008481

それは次元のて定義によりますが、おかしいとは言えない。 
物理学は、無から爆発で始まった と言っていますね。
ゼロから始まったとも言える。

再生核研究所声明225(2015.4.23)偉大な数ゼロ ―ゼロの教え
(最近、急に気に成り出した心境で、本声明は 1種の悟りの心得に通じるので、概ね退職された人向きと言える。)
ゼロ除算の結果は、直角双曲線関数 y=1/x の原点における値が ゼロであると言っている。それは、まるで、原点でゼロが正の量と負の量に 爆発して双方に広がっているようである。その様は現代物理学の学説、ビッグバン、すなわち、宇宙はあるとき、無から爆発によって突然現れ、その爆発の続きが続いているという。 無からの発生は、プラス、マイナス、とで合わせてゼロで、無からの発生はおかしいとも言えないという。これは、全体としてゼロとして釣り合っていることを意味する。universe が全体として ゼロとして釣り合っているということは 奇妙にも我々の心に響くものがある。
苦労しただけ、喜びが湧くのでは?
明るい面があるだけ、暗い面があるのでは?
ゼロは基準値であり、長命な生物も短命な生物も、 長命な人生も、短命な人生も同じようなものではないだろうか?
幼いころ、麦畑の上でひばりのさえずる情景を見たのを想い出す。 飛び立っては天高くまい上がり、やがて巣に戻る。 地平ゼロから始まって地平ゼロに帰する。永くさえずっていても、短くても結局同じではないか。 人間も誕生して、結局は元に戻る。結局、みんな同じようではないだろうか。 人生の長短など本質的には問題では無くて、みんな同じようではないだろうか。 ゼロから始まってゼロに帰する、ゼロとは そのようなものではないだろうか。
他方、ゼロ除算の複素版は、平面上では どのような方向でも どんどん原点から遠ざかれば、無限遠点の1点に行くが、 その無限遠点は、突然、原点に戻っている ことを述べている。これは結局のところ、ゼロから始まってゼロに帰すること、すなわち、元に戻る universe の原理を教えているのではないだろうか。
本声明は、ゼロの心境が大事なこと を述べている。
また、始めが大事であること を述べている。
以 上


再生核研究所声明232(2015.5.26)無限大とは何か、無限遠点とは何か。― 驚嘆すべきゼロ除算の結果
まず、ウィキペディアで無限大、無限遠点、立体射影: 語句を確認して置こう:
無限大 :記号∞ (アーベルなどはこれを 1 / 0 のように表記していた)で表す。 大雑把に言えば、いかなる数よりも大きいさまを表すものであるが、より明確な意味付けは文脈により様々である。例えば、どの実数よりも大きな(実数の範疇からはずれた)ある特定の“数”と捉えられることもある(超準解析や集合の基数など)し、ある変量がどの実数よりも大きくなるということを表すのに用いられることもある(極限など)。無限大をある種の数と捉える場合でも、それに適用される計算規則の体系は1つだけではない。実数の拡張としての無限大には ∞ (+∞) と -∞ がある。大小関係を定義できない複素数には無限大の概念はないが、類似の概念として無限遠点を考えることができる。また、計算機上ではたとえば∞+iのような数を扱えるものも多い。
無限遠点 : ユークリッド空間で平行に走る線が、交差するとされる空間外の点あるいは拡張された空間における無限遠の点。平行な直線のクラスごとに1つの無限遠点があるとする場合は射影空間が得られる。この場合、無限遠点の全体は1つの超平面(無限遠直線、無限遠平面 etc.)を構成する。また全体でただ1つの無限遠点があるとする場合は(超)球面が得られる。複素平面に1つの無限遠点 ∞ を追加して得られるリーマン球面は理論上きわめて重要である。無限遠点をつけ加えてえられる射影空間や超球面はいずれもコンパクトになる。
立体射影: 数学的な定義
• 単位球の北極から z = 0 の平面への立体射影を表した断面図。P の像がP ' である。
• 冒頭のように、数学ではステレオ投影の事を写像として立体射影と呼ぶので、この節では立体射影と呼ぶ。 この節では、単位球を北極から赤道を通る平面に投影する場合を扱う。その他の場合はあとの節で扱う。
• 3次元空間 R3 内の単位球面は、x2 + y2 + z2 = 1 と表すことができる。ここで、点 N = (0, 0, 1) を"北極"とし、M は球面の残りの部分とする。平面 z = 0 は球の中心を通る。"赤道"はこの平面と、この球面の交線である。
• M 上のあらゆる点 P に対して、N と P を通る唯一の直線が存在し、その直線が平面z = 0 に一点 P ' で交わる。Pの立体射影による像は、その平面上のその点P ' であると定義する。
無限大とは何だろうか。 図で、xの正方向を例えば考えてみよう。 0、1、2、3、、、などの正の整数を簡単に考えると、 どんな大きな数(正の) n に対しても より大きな数n + 1 が 考えられるから、正の数には 最も大きな数は存在せず、 幾らでも大きな数が存在する。限りなく大きな数が存在することになる。 そうすると無限大とは何だろうか。 普通の意味で数でないことは明らかである。 よく記号∞や記号+∞で表されるが、明確な定義をしないで、それらの演算、2 x∞、∞+∞、∞-∞、∞x∞,∞/∞ 等は考えるべきではない。無限大は普通の数ではない。 無限大は、極限を考えるときに有効な自然な、明確な概念、考えである。 幾らでも大きくなるときに 無限大の記号を用いる、例えばxが どんどん大きくなる時、 x^2 (xの2乗)は 無限大に近づく、無限大である、無限に発散すると表現して、lim_{x \to +\infty} x^2 =+∞ と表す。 記号の意味はxが 限りなく大きくなるとき、x の2乗も限りなく大きくなるという意味である。 無限大は決まった数ではなくて、どんどん限りなく 大きくなっていく 状況 を表している。
さて、図で、 x が正の方向で どんどん大きくなると、 すなわち、図で、P ダッシュが どんどん右方向に進むとき、図の対応で、Pがどんどん、 Nに近づくことが分かるだろう。
x軸全体は 円周の1点Nを除いた部分と、 1対1に対応することが分かる。 すなわち、直線上のどんな点も、円周上の1点が対応し、逆に、円周の1点Nを除いた部分 のどんな点に対しても、直線上の1点が対応する。
面白いことは、正の方向に行っても、負の方向に行っても原点からどんどん遠ざかれば、円周上では Nの1点にきちんと近づいていることである。双方の無限の彼方が、N の1点に近づいていることである。
この状況は、z平面の原点を通る全ての直線についても言えるから、平面全体は球面全体からNを除いた球面に 1対1にちょうど写っていることが分かる。
そこで、平面上のあらゆる方向に行った先が存在するとして 想像上の点 を考え、その点に球面上の点 Nを対応させる。 すると、平面にこの想像上の点を加えた拡張平面は 球面全体 (リーマン球面と称する) と1対1に 対応する。この点が 無限遠点で符号のつかない ∞ で 表す。 このようにして、無限を見ることが、捉えることができたとして、喜びが湧いてくるのではないだろうか。 実際、これが100年を越えて、複素解析学で考えられてきた無限遠点で 美しい理論体系を形作ってきた。
しかしながら、無限遠点は 依然として、数であるとは言えない。人為的に無限遠点に 代数的な構造を定義しても、人為的な感じは免れず、形式的、便宜的なもので、普通の数としては考えられないと言える。
ところが、ゼロ除算の結果は、1 / 0 はゼロであるというのであるから、これは、上記で何を意味するであろうか。基本的な関数 W=1/z の対応は、z =0 以外は1対1、z =0 は W=0 に写り、全平面を全平面に1対1に写している。 ゼロ除算には無限遠点は存在せず、 上記 立体射影で、 Nの点が突然、0 に対応していることを示している。 平面上で原点から、どんどん遠ざかれば、 どんどんNに近づくが、ちょうどN に対応する点では、 突然、0 である。
この現象こそ、ゼロ除算の新規な神秘性である。
上記引用で、記号∞ (アーベルなどはこれを 1 / 0 のように表記していた)、オイラーもゼロ除算は 極限の概念を用いて、無限と理解していたとして、天才 オイラーの間違いとして指摘されている。
ゼロ除算は、極限の概念を用いて得られるのではなくて、純粋数学の理論の帰結として得られた結果であり、世の不連続性の現象を表しているとして新規な現象の研究を進めている。
ここで、無限大について、空間的に考えたが、個数の概念で、無限とは概念が異なることに注意して置きたい。 10個、100個、無限個という場合の無限は異なる考えである。自然数1,2,3、、、等は無限個存在すると表現する。驚嘆すべきことは、無限個における無限には、幾らでも大きな無限が存在することである。 例えば、自然数の無限は最も小さな無限で、1cm の長さの線分にも、1mの長さの線分にも同数の点(数、実数)が存在して、自然数全体よりは 大きな無限である。点の長さはゼロであるが、点の集まりである1cmの線分には長さがあるのは、線分には点の個数が、それこそ目もくらむほどの多くの点があり、長さゼロの点をそれほど沢山集めると,正の長さが出てくるほどの無限である。

以 上


再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
ゼロ除算 100/0=0 は 説明も不要で、記号を含めて 数学的に既に確定していると考える。 もちろん、そこでは100/0 の意味をきちんと捉え、確定させる必要がある。 100/0 は 割り算の自然な拡張として ある意味で定義されたが、 その正確な意味は微妙であり、いろいろな性質を調べることによって その意味を追求して行くことになる:
ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
100/0=0 というのであるから、それは 100= 0 x0 というような意味を有するであろうかと 問うことは可能である。 もちろん、x を普通の掛け算とすると0x0 =0 となり、矛盾である。ところが山根正巳氏によって発見された解釈、物理的な解釈は絶妙に楽しく、深い喜びの情念を与えるのではないだろうか:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
等速で一直線上 異なる方向から、同じ一定の速さvで、同じ質量mの物体が近づいているとする。 その時、2つの物体の運動エネルギーの積は
\begin{equation}
\frac{1}{2}m{ v}^2 \times \frac{1}{2}m{(- v)^2} =E^2.
\end{equation}
で 一定E^2である。
ところが2つの物体が衝突して止まれば、vは ともにゼロになり、衝突の後では見かけ上
\begin{equation}
0 \times 0 =E^2.
\end{equation}
となるのではないだろうか。 その時はE^2 は 熱エネルギーなどに変わって、エネルギー保存の法則は成り立つが、ある意味での掛け算が、ゼロ掛けるゼロになっている現象を表していると考えられる。 ゼロ除算はこのような変化、不連続性を捉える数学になっているのではないだろうか。 意味深長な現象を記述していると考える。
運動エネルギー、物質は数式上から消えて、別のものに変化した。 逆に考えると、形式上ないものが変化して、物とエネルギーが現れる。これはビッグバンの現象を裏付けているように感じられる。 無から有が出てきたのではなくて、何かの大きな変化をビッグバンは示しているのではないだろうか?
以 上

f:id:ssaitoh:20150108151429j:image
f:id:ssaitoh:20150209145051j:image
f:id:ssaitoh:20150325132109j:image
f:id:ssaitoh:20150325132119j:image
f:id:ssaitoh:20150325132129j:image
f:id:ssaitoh:20150325132138j:image
f:id:ssaitoh:20150325132140j:image
f:id:ssaitoh:20150325132149j:image
f:id:ssaitoh:20150325132158j:image
f:id:ssaitoh:20150325132340j:image
f:id:ssaitoh:20150325132327j:image
f:id:ssaitoh:20150325132314j:image
f:id:ssaitoh:20150325132301j:image
f:id:ssaitoh:20150325132259j:image
f:id:ssaitoh:20150325132249j:image
f:id:ssaitoh:20150325132248j:image
f:id:ssaitoh:20150325132239j:image
f:id:ssaitoh:20150325132235j:image
f:id:ssaitoh:20150325132229j:image
f:id:ssaitoh:20150325132219j:image
f:id:ssaitoh:20150325132209j:image
f:id:ssaitoh:20150325132159j:image
f:id:ssaitoh:20150325132211j:image

0 件のコメント:

コメントを投稿