2016年9月9日金曜日

カープ25年ぶりV王手 瞬間最高視聴率58・5%!視聴占拠率は驚異の61・5%

カープ25年ぶりV王手 瞬間最高視聴率58・5%!視聴占拠率は驚異の61・5%



 広島が25年ぶりのリーグ優勝へ王手をかけた8日の中日戦(マツダ)を生中継した地元局・広島テレビ(日本テレビ系列)の平均視聴率が45・8%(ビデオリサーチ調べ、広島地区)だったことが9日、分かった。

2016年度(4月4日~)で、広島地区の全ての番組を通じての最高視聴率。瞬間最高視聴率は、放送終了直前の午後8時50分に58・5%をマークした。7回裏、打者走者の新井が、中日の失策で二塁まで進んだリプレーの再生中だった。この直前の午後8時45分には、巨人が阪神に勝利したため当日の優勝がなくなったことを伝えていた。

 また、番組視聴占拠率(シェア=該当局の視聴率が放送全体の視聴率に占める割合)は、61・5%を記録した。

 今季はシーズン序盤から絶好調。10連勝を飾った6月28日のヤクルト戦が33・0%(広島テレビ)、球団史上32年ぶりの11連勝を達成した29日のヤクルト戦が31・4%(広島テレビ)を記録した。

 8日の試合は、2回に石原の決勝二塁打などで一挙5点。マツダスタジアム史上最多となる3万2546人の大観衆の前で4連勝を飾った。しかし、2位・巨人が阪神に逆転勝ちしたため、90年の巨人に並ぶ史上最速優勝(2リーグ制以降)は逃した。9日は試合がなく、巨人がヤクルトに敗れれば優勝が決定する。http://headlines.yahoo.co.jp/hl?a=20160909-00000075-

25年ぶりですか

再生核研究所声明80(2012.03.20)  挑戦 とは 何か

(この声明は 朝日新聞 『天声新語』 募集の課題 「挑戦」から ヒントを得て、考えられたものである)
およそ、人生も世界も慣性の法則で動いているものと言える。これは 世の中は物理学の慣性の法則に従っているように、大きな流れの上にあるということである。実際、人は気づいてみたらこの世に生を享け、ある流れの上で生かされていると言える。今日在るは昨日の延長上にあり、昨日はその前の延長上にあると遡って行ける。明日の多くは連続性に従って今日の延長として、相当に決まっていると言える。人間が生きたいと思うのは 今まで生きてきたから、明日も生きたいと 慣性の法則で志していると言える(再生核研究所声明 72 慣性の法則 ― 脈動、乱流は 人世、社会の普遍的な法則)。
しかしながら、面白いことには、人間存在の神秘性であるが、人間には自由意志があって、その流れに少し逆らうような有り様が可能である。 顕著な例が、挑戦である。すなわち、戦い挑む、やってみる、試みるということは 人間の自由意志の顕著な例である。冒険、競争、求道、研究、芸術などの営みは、人間であることの証であるとも言え、挑戦とは人間としての存在の本質を表しているところの、人間固有の人間らしい営みである。 
されば、人間の存在の意義とは何か? まず、生きること、生きて存在しなければ始まらない ― 生命の基本定理、人生、世界、生物界において 実際これくらいしか、確かなことは、無い。 逆に考えてみよう、生きて、存在しなければ、生まれて来る前のように 何も認識できず、したがって何も知らず、何も伝えられず、全ての前提は 消えてしまうだろう(再生核研究所声明13: 第1原理 ― 最も大事なこと)。
さらに1歩進めて、人間として生きることの意義とは何だろうか。 それは、つきるところ、人生の意義は感動することにある ― 人生の基本定理 にあると言える。 人間が何に感動するかは、個性にもよるが、本能に基づくものは当然として、真、善、美、聖などを求めているときであると言え、知ることと、自由を求めることが それらの基礎である。 その本質は、気づくことと、喜びを感じることに他ならない。 人間として生きることの本質ではないだろうか(再生核研究所声明12: 人生、世界の存在していることの意味について)。 
そこで、いま、日本国において、取り組むべき挑戦課題を提案したい。
まず、国家財政を立て直すこと、国だけの債務をみても、1000兆円に迫り、3年続けて 歳入の2倍を超える歳出である。 更に大震災、原発事故、放射能対策の膨大な経費である。このような財政を続けていける道理は 世に無いから、国は大胆に財政問題を国民に明らかにして、官民挙げて 財政問題に挑戦すべきである。もちろん増税だけではなく、国民に理解を求めるための 節税や行政改革なども断行すべきである。ここで大事な観点は、縮小方向ばかりではなく、財政再建の積極的な展開も多方面に志向すべきであるということである。新しい職場の開拓、ビジネス効果志向などである。国の活動に人材の活用によるビジネス感覚の導入も必要ではないだろうか。これらは、同時多発的に広範に取り組む必要があり、ここでの挑戦とは、正しく時間との戦いであると言える。何事も追い込まれる前に先手を打つのが 賢明な対応の在りようではないだろうか。世界は 世界混乱前夜の状況にあると言えるのではないだろうか(再生核研究所声明 45: 第2次世界大戦と第3次世界混乱)。
次に、原発事故を鎮圧して、放射能対策をしっかり行うこと。これは当然であるが、より真剣に取り組むべきではないだろうか。世に 反原発についての意見やデモ等が行われているが これほど無意味で、無駄な行動は無い。誰でも原発など無いにこしたことはないと考えるのは当然であり、また、東電その他関係者自身が、一般国民よりははるかに、原発事故の重大さと危険性を明確に自覚していることは 当たり前である。 世に騒がれるまでもない当然のことではないだろうか。当然のことを騒いでいて、何か建設的、生産的なことが有るだろうか。 逆に、原発を何とか活用すべく、挑戦的に取り組むことは 自明ではない、やりがいのある挑戦課題ではないだろうか。それこそが、およそ人間存在の原理ではないだろうか。 実際、人類は、未知の世界に冒険し、新世界を開拓し、次々と世界を拡大、深化させてきたのではないのか。不可能と思えることを可能ならしめ、宇宙の隅々まで、神の意思までをも 究めたいというが、そもそも人間存在の原理ではないだろうか。もちろん、これは安易に取り組むことを意味せず、慎重に、慎重に進めるのは当然であるが、原発を諦めるということは、それに対する人類の敗北を意味し、人間存在の本質に抵触すると言わなければならない。何時かは原子力ネルギーを自由に制御して、広大な宇宙に飛び出し、新天地を拓こうではないか(再生核研究所声明 32: 夜明け―ノアの方舟)。
次に教育の問題である。 日本の教育は何を目指しているのかと問いたい。 ただ大学受験を目指して、大学に入る為の勉強に ほとんどの部分を占めているように見える。受験のための塾、専門の学校の繁茂がそれらを示してはいないだろうか。 教育を教育の在るべき姿に戻って、検討し直すことが 中長期的には日本国における大事な挑戦課題ではないだろうか。 教育の在るべき姿などは既に教育基本法その他で 確立しているが 弊害は、本末転倒の教育の在り様になっている実情、実体にある(再生核研究所声明 70 本末転倒、あべこべ ― 初心忘れるべからず)。教育の原理についても注意を喚起したい(再生核研究所声明76 教育における心得、教育原理)。
挑戦とは人間の自由意志の明確な表現として、決断による情熱の伴った生命の燃焼であり、志である。 そこに良い感動が伴えば、より良い人生と言えるだろう。

以 上
再生核研究所声明308(2016.06.27) ゼロ除算とは何か、始めてのゼロ除算、ゼロで割ること

相当な記録、解説が蓄積されてきたので、外観する意味で表題の下で簡単に纏めて置こう。
先ず、ゼロ除算とは 加,減,乗,除の四則演算において 割る時にどうしてゼロで割れないかの問題を広く表す。ゼロで割ることを考えることである。西暦628年インドでゼロが文献上の記録として現れて以来議論されてきた。ある専門家によればアリストテレスが物理的にゼロ除算を最初に考え、不可能であるとされたという。割り算を掛け算の逆と考えれば、ゼロで割ることは 割られる数がゼロでなければ、不可能であることが簡単に証明されてしまうが、物理法則などには、分数式が現れて、分母がゼロである場合興味深いとして、現代でもいろいろ問題にされ、インターネット上をにぎわしている。この件では、ブラックホールの理論や相対性理論の関係からアインシュタインの人生最大の懸案の問題であるという言葉に象徴される。他の大きな関心として、計算機がゼロ除算にあって計算機障害を起こした事件から、ゼロ除算障害回避を目指して新しい数体系を考えている相当なグループが存在する。
このような永い歴史に対して、ゼロ除算を可能にする自然で簡単な体系が山田体として確立され、四則演算は 簡単な修正で ゼロ除算を含めていつでも可能であることが明らかになった。しかしながら、ここには分数,割り算の意味を自然に拡張して、可能になったという、新しい概念があるので、扱いには大いに気を付ける必要がある。分母がゼロである場合、ある意味で考えられるという、考え方である。ここは、従来、分数で、分母がゼロになる場合、微分学の基礎概念である、極限で考えるに対して、新しい意味付けを与える方法が発見された。これは、無限級数f(x) = \sum_{n= -\infty}^{\infty} C_n (x –a)^n に対して f(a)=C_0 と簡単に述べられる。具体例で述べれば、関数e^{xt}/(x^2)の原点における値はt^2/2として,関数cos(xt)/(x^3)の原点での値は恒等的にゼロとして意味を有する。このような値の実際的な意味が、幾何学、解析学、解析幾何学,微分方程式など広範に現れて、従来分母がゼロになる場合に避けてきたところ、いろいろな意味と解釈が可能であることが分かってきた。
新しい、状況とは何かであるが、第一には、我々の空間に対する考えに新しい世界が現れたことである。基本的な関数y=1/z の原点での値がゼロと定義されることから、従来無限遠点.無限と考えられていた想像上の点が 実はゼロで表されることになる。そこで、無限が関与する数学が改められることである。極限値として、+、マイナス、無限、あるいは複素平面で、無限は考えられるが、それらは定まった数ではなく、定まった数としての無限の存在を否定する数学になっている。
それで、古典的な結果、原点の原点に中心をもつ円に関する鏡像は 無限遠点ではなく、ゼロであること無限遠点はゼロで表されることなど、 基本的な変更が 要求される。ゼロ除算は可能であり、我々の空間の認識は間違っているということになる。
解析関数は孤立特異点で、と言って、無限遠点の値を取るという考えは改められ、特異点の近くで、幾らでも無限遠点の近くの値を取るものの、特異点では、有限確定値を取ると改められる。
このような有限確定値の具体的な意味付けがいろいろ現れた。顕著な例は、(x,y) 直交座標系で y軸の勾配はゼロで、微分学で微分係数が +、マイナス、無限として極限値が存在するとき、その時、微分係数はゼロであると定義すると、解析学も幾何学も上手く調和して、微分学の多くの公式が付加条件なしに一般的に成り立ち、解析幾何学と調和がとれていることが明らかにされた。数学の相当な部分の修正が必要であり、数学をより美しく、統一的にスッキリと纏められる。
典型的な例として、半径Rの円を考えてRを無限に飛ばすことを考えると、円の面積は当然、限りなく大きくなるが、Rが更には大きくできないとき、円の面積は突然ゼロになることが、解析幾何学とゼロ除算で導かれた。これはRが更には大きくできないときが、円板が半空間、円が直線になる場合で、半平面の面積がゼロであることを示している。このことはある大きな世界を覗かせていて、破壊現象の記述無限の考え方に大きな変革をもたらす。平行線の概念と空間の概念は、新しい世界観であるから、次でより詳しく触れている:

再生核研究所声明306(2016.06.21)平行線公理、非ユークリッド幾何学、そしてゼロ除算

以 上
再生核研究所声明309(2016.06.28) 真無限と破壊 ― ゼロ除算
3辺の長さをa,b,cとする三角形を考える。その位置で、例えば、1辺bをどんどんのばしていく。一方向でも、双方向でも良い。どこまでも、どこまでも伸ばしていくとどうなるであろうか。bは限りなく長くなるが、結局、辺bは a, cの交点Bと平行な直線になって、 それ以上伸ばすことや長くすることはできないことに気づくだろう。正方向だけに伸びれば、辺cは辺bの方向と平行な半曲線に、負の方向に伸びれば、同様に辺aもBを通るbの方向と平行な半曲線になる。いずれの場合にも、bはそれ以上伸びないと言う意味で真無限の長さと表現できるだろう。もちろん、有限の長さではない。大事な観点は、ある意味で、もはやそれ以上伸びない、大きくならないという意味で、限りがあるとも言える無限である。
途中で作られる三角形の面積は辺cをどんどん伸ばしていくと、どんどん増加し、従来の数学では、面積は無限に発散すると表現してきた。平行線で囲まれる(?)面積、あるいは、平行線で囲まれる(?)部分を切った部分(一方向に辺cを伸ばした場合)は面積無限であると考えるだろう。ところがゼロ除算は、それらの面積はゼロであると述べている。 一般に、長さcをどんどん大きくしていくと、幾らでも大きくなって行くのに対して、真無限に至れば突然ゼロになるという結果がゼロ除算の大事な帰結である。 この現象は関数y=1/x の様子をxが正方向からゼロに近づいた状況を考えれば、理解できるだろう。 1/0=0 である。― c を無限に近づけた状況を知るには、1/c の原点での状況を見れば良い。
実に美しいことには、上記三角形の面積の状況は、3直線で囲まれた部分の面積を3直線を表す方程式で書いて、ゼロ除算の性質を用いると、解析幾何学的にも導かれるという事実である。ゼロ除算の結果を用いると、解析幾何学的に証明されるという事実である。
この事実は普遍的な現象として破壊現象の表現として述べられる。直方体の体積でも、1辺を真無限まで伸ばせば、体積はゼロである。円柱でも真無限まで伸ばせば、体積はゼロである。真無限まで行けば、もともとの形が壊れているためと自然に理解できるだろう。
円や球の場合にも、半径が真無限まで行けば、半平面や半空間になるから、同じように面積や体積がゼロになる。これらは、ゼロ除算と解析幾何学からも導かれ、ゼロ除算は基本的な数学であることが分かる。このことは、空間は、限りなく大きなものではないということをも述べていて、 楽しい。

以 上

0 件のコメント:

コメントを投稿