2016年9月18日日曜日

人気漫画「こち亀」40年の連載終了 葛飾 亀有に多くのファン

人気漫画「こち亀」40年の連載終了 葛飾 亀有に多くのファンhttp://www3.nhk.or.jp/news/html/20160917/k10010690221000.html

子供頃よくジャンプを読んでいました、感慨深いものがあります

再生核研究所声明80(2012.03.20)  挑戦 とは 何か

(この声明は 朝日新聞 『天声新語』 募集の課題 「挑戦」から ヒントを得て、考えられたものである)
およそ、人生も世界も慣性の法則で動いているものと言える。これは 世の中は物理学の慣性の法則に従っているように、大きな流れの上にあるということである。実際、人は気づいてみたらこの世に生を享け、ある流れの上で生かされていると言える。今日在るは昨日の延長上にあり、昨日はその前の延長上にあると遡って行ける。明日の多くは連続性に従って今日の延長として、相当に決まっていると言える。人間が生きたいと思うのは 今まで生きてきたから、明日も生きたいと 慣性の法則で志していると言える(再生核研究所声明 72 慣性の法則 ― 脈動、乱流は 人世、社会の普遍的な法則)。
しかしながら、面白いことには、人間存在の神秘性であるが、人間には自由意志があって、その流れに少し逆らうような有り様が可能である。 顕著な例が、挑戦である。すなわち、戦い挑む、やってみる、試みるということは 人間の自由意志の顕著な例である。冒険、競争、求道、研究、芸術などの営みは、人間であることの証であるとも言え、挑戦とは人間としての存在の本質を表しているところの、人間固有の人間らしい営みである。 
されば、人間の存在の意義とは何か? まず、生きること、生きて存在しなければ始まらない ― 生命の基本定理、人生、世界、生物界において 実際これくらいしか、確かなことは、無い。 逆に考えてみよう、生きて、存在しなければ、生まれて来る前のように 何も認識できず、したがって何も知らず、何も伝えられず、全ての前提は 消えてしまうだろう(再生核研究所声明13: 第1原理 ― 最も大事なこと)。
さらに1歩進めて、人間として生きることの意義とは何だろうか。 それは、つきるところ、人生の意義は感動することにある ― 人生の基本定理 にあると言える。 人間が何に感動するかは、個性にもよるが、本能に基づくものは当然として、真、善、美、聖などを求めているときであると言え、知ることと、自由を求めることが それらの基礎である。 その本質は、気づくことと、喜びを感じることに他ならない。 人間として生きることの本質ではないだろうか(再生核研究所声明12: 人生、世界の存在していることの意味について)。 
そこで、いま、日本国において、取り組むべき挑戦課題を提案したい。
まず、国家財政を立て直すこと、国だけの債務をみても、1000兆円に迫り、3年続けて 歳入の2倍を超える歳出である。 更に大震災、原発事故、放射能対策の膨大な経費である。このような財政を続けていける道理は 世に無いから、国は大胆に財政問題を国民に明らかにして、官民挙げて 財政問題に挑戦すべきである。もちろん増税だけではなく、国民に理解を求めるための 節税や行政改革なども断行すべきである。ここで大事な観点は、縮小方向ばかりではなく、財政再建の積極的な展開も多方面に志向すべきであるということである。新しい職場の開拓、ビジネス効果志向などである。国の活動に人材の活用によるビジネス感覚の導入も必要ではないだろうか。これらは、同時多発的に広範に取り組む必要があり、ここでの挑戦とは、正しく時間との戦いであると言える。何事も追い込まれる前に先手を打つのが 賢明な対応の在りようではないだろうか。世界は 世界混乱前夜の状況にあると言えるのではないだろうか(再生核研究所声明 45: 第2次世界大戦と第3次世界混乱)。
次に、原発事故を鎮圧して、放射能対策をしっかり行うこと。これは当然であるが、より真剣に取り組むべきではないだろうか。世に 反原発についての意見やデモ等が行われているが これほど無意味で、無駄な行動は無い。誰でも原発など無いにこしたことはないと考えるのは当然であり、また、東電その他関係者自身が、一般国民よりははるかに、原発事故の重大さと危険性を明確に自覚していることは 当たり前である。 世に騒がれるまでもない当然のことではないだろうか。当然のことを騒いでいて、何か建設的、生産的なことが有るだろうか。 逆に、原発を何とか活用すべく、挑戦的に取り組むことは 自明ではない、やりがいのある挑戦課題ではないだろうか。それこそが、およそ人間存在の原理ではないだろうか。 実際、人類は、未知の世界に冒険し、新世界を開拓し、次々と世界を拡大、深化させてきたのではないのか。不可能と思えることを可能ならしめ、宇宙の隅々まで、神の意思までをも 究めたいというが、そもそも人間存在の原理ではないだろうか。もちろん、これは安易に取り組むことを意味せず、慎重に、慎重に進めるのは当然であるが、原発を諦めるということは、それに対する人類の敗北を意味し、人間存在の本質に抵触すると言わなければならない。何時かは原子力ネルギーを自由に制御して、広大な宇宙に飛び出し、新天地を拓こうではないか(再生核研究所声明 32: 夜明け―ノアの方舟)。
次に教育の問題である。 日本の教育は何を目指しているのかと問いたい。 ただ大学受験を目指して、大学に入る為の勉強に ほとんどの部分を占めているように見える。受験のための塾、専門の学校の繁茂がそれらを示してはいないだろうか。 教育を教育の在るべき姿に戻って、検討し直すことが 中長期的には日本国における大事な挑戦課題ではないだろうか。 教育の在るべき姿などは既に教育基本法その他で 確立しているが 弊害は、本末転倒の教育の在り様になっている実情、実体にある(再生核研究所声明 70 本末転倒、あべこべ ― 初心忘れるべからず)。教育の原理についても注意を喚起したい(再生核研究所声明76 教育における心得、教育原理)。
挑戦とは人間の自由意志の明確な表現として、決断による情熱の伴った生命の燃焼であり、志である。 そこに良い感動が伴えば、より良い人生と言えるだろう。

以 上
再生核研究所声明 148(2014.2.12) 100/0=0,  0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志

100割る0 の意味を質問されたが(なぜ 100÷0は100ではないのか? なぜ 100÷1は100なのか… 0とは何...aitaitokidakenimoさん)、これは、定義によれば、その解、答えが有るとして、a と仮に置けば、 100=a x0 = 0 で矛盾、すなわち、解は、答えは存在しないとなる。
方程式 a x0= b は b=0 でなければ 解は無く、答えが求まらない。(特に、bが0ならば、解 a は 何でも良いと言うことに成る。)
解が、存在しなかったり、沢山の解が有ったりすると言う、状況である。
そこで、何時でも解が存在するように、しかも唯一つに定まるように、さらに 従来成り立っていた結果が そのまま成り立つように(形式不変の原理)、割り算の考えを拡張できないかと考えるのは、数学では よくやることである。数学の世界を 美しくしたいからである。
実際、文献の論文で 任意関数で割る概念を導入している。
現在の状況では、b 割るa の意味を ax – b の2乗を最小にする x で、しかも x の2乗を最小にする数 x で定義する。後半の部分が無いと、a が0の場合 x  が定まらない。後半が有ると0として、唯一つに定まる。この意味で割り算の意味を考えれば、100割る0は 0 であるとなる。 
上記で もちろん、2乗を最小にする の最小値が0である場合が、 普通の割り算の解、
b 割るa を与える。
もちろん、我々の意味で、0割る0は 曖昧なく、解は唯一つに定まって、0となる。
f  割る g を ロシアの著名な数学者 チコノフの考えた正則化法 と 再生核の理論 を併用すると 一般的な割り算を 任意関数g で定義できて、上記の場合は、100割る0は 0 という解に成る。
すなわち、解が存在しなかった場合に、割り算の意味を 自然に拡張すると 唯一つに解は存在して それは0であると言う、結果である。
上記で、ax – b の2乗を最小にする x で、と考えるのは、近似の考え方から、極めて自然と考えられるが、さらに、x の2乗を最小にする数 x とは、神は、最も簡単なものを選択する、これはエネルギー最小のもの、できれば横着したい という 世に普遍的に存在する 神の意志 が現れていると考えられる(光は、最短時間で到達するような経路で進むという ― フェルマーの原理)、神が2を愛している好きだ とは 繰り返し述べてきた(神は 2を愛し給う)(http://www.jams.or.jp/kaiho/kaiho-81.pdf)。
これで、0で割るときの心配が無くなった。この考えの 実のある展開と応用は多い。
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―

以 上
文献:
Castro, L.P.Saitoh, S. Fractional functions and their representations.  Complex Anal. Oper. Theory 7, No. 4, 1049-1063 (2013).

ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269


世界中で、ゼロ除算は 不可能 か 
可能とすれば ∞  だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。

原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では
無限遠点はどこにあるのでしょうか・・・・・

無限遠点は存在するが、無限大という数は存在しない・・・・

ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。

地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか????

1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.

もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。


割り算のできる人には、どんなことも難しくない

世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。

ベーダ・ヴェネラビリス

数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年

数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_

割り算を掛け算の逆だと定義した人は、誰でしょう???

0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。

multiplication・・・・・増える 掛け算(×) 1より小さい数を掛けたら小さくなる。 大きくなるとは限らない。

ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_

ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように

『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html …… →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。

明治5年(1872)

ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997

Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。

ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・

∞とはなんですか・・・・・・・・

分からないものは考えられません・・・・・

1人当たり何個になるかと説いていますが、1人もいないのですから、その問題は意味をなさない。
よってこれは、はじめから問題になりません。
ついでですが、これには数学的に確定した解があって それは0であるという事が、最近発見されました。

Reality of the Division by Zero z/0 = 0
Einstein's Only Mistake: Division by Zero
再生核研究所声明255 (2015.11.3) 神は、平均値として関数値を認識する
(2015.10.30.07:40 
朝食後 散歩中突然考えが閃いて、懸案の問題が解決した:
どうして、ゼロ除算では、ローラン展開の正則部の値が 極の値になるのか?
そして、一般に関数値とは何か 想いを巡らしていた。
解決は、驚く程 自分の愚かさを示していると呆れる。 解は 神は、平均値として関数値を認識すると纏められる。実際、解析関数の場合、上記孤立特異点での関数値は、正則の時と全く同じく コ-シーの積分表示で表されている。 解析関数ではコ-シーの積分表示で定義すれば、それは平均値になっており、この意味で考えれば、解析関数は孤立特異点でも 関数値は 拡張されることになる ― 原稿には書いてあるが、認識していなかった。
 連続関数などでも関数値の定義は そのまま成り立つ。平均値が定義されない場合には、いろいろな意味での平均値を考えれば良いとなる。解析関数の場合の微分値も同じように重み付き平均値の意味で、統一的に定義でき、拡張される。 いわゆるくりこみ理論で無限値(部)を避けて有限値を捉える操作は、この一般的な原理で捉えられるのではないだろうか。2015.10.30.08:25)
上記のようにメモを取ったのであるが、基本的な概念、関数値とは何かと問うたのである。関数値とは、関数の値のことで、数に数を対応させるとき、その対応を与えるのが関数でよく f  等で表され x 座標の点 x  をy 座標の点 yに対応させるのが関数 y = f(x) で、放物線を表す2次関数 y=x^2, 直角双曲線を表す分数関数 y=1/x 等が典型的な例である。ここでは 関数の値 f(x) とは何かと問うたものである。結論を端的に表現するために、関数y=1/xの原点x=0における値を問題にしよう。 このグラフを思い出して、多くの人は困惑するだろう。なぜならば、x が正の方からゼロに近づけば 正の無限に発散し、xが負の方からゼロに近づけば負の無限大に発散するからである。最近発見されたゼロ除算、ゼロで割ることは、その関数値をゼロと解釈すれば良いという簡単なことを言っていて、ゼロ除算はそれを定義とすれば、ゼロ除算は 現代数学の中で未知の世界を拓くと述べてきた。しかし、これは誰でも直感するように、値ゼロは、 原点の周りの値の平均値であることを知り、この定義は自然なものであると 発見初期から認識されてきた。ところが、他方、極めて具体的な解析関数 W = e^{1/z} = 1 + 1/z + 1/2!z^2 + 1/3!z^3 +……. の点 z=0 における値がゼロ除算の結果1であるという結果に接して、人は驚嘆したものと考えられる。複素解析学では、無限位数の極、無限遠点の値を取ると考えられてきたからである。しかしながら、上記の考え、平均値で考えれば、値1をとることが 明確に分かる。実際、原点のコーシー積分表示をこの関数に適用すれば、値1が出てくることが簡単に分かる。そもそも、コーシー積分表示とは 関数の積分路上(簡単に点の周りの円周上での、 小さな円の取り方によらずに定まる)で平均値を取っていることに気づけば良い。
そこで、一般に関数値とは、考えている点の周りの平均値で定義するという原理を考える。
解析関数では 平均値が上手く定義できるから、孤立特異点で、逆に平均値で定義して、関数を拡張できる。しかし、解析的に延長されているとは言えないことに注意して置きたい。 連続関数などは 平均値が定義できるので、関数値の概念は 今までの関数値と同じ意味を有する。関数族では 平均値が上手く定義できない場合もあるが、そのような場合には、平均値のいろいろな考え方によって、関数値の意味が異なると考えよう。この先に、各論の問題が派生する。

以 上


Reality of the Division by Zero $z/0=0$

0 件のコメント:

コメントを投稿