These are the only 8 numbers you need to do maths
There are infinitely many numbers, and infinitely many ways to combine and manipulate those numbers. Mathematicians often represent numbers in a line. Pick a point on the line, and this represents a number.
At the end of the day, though, almost all of the numbers that we use are based on a handful of extremely important numbers that sit at the foundation of all of maths. What follows are the eight numbers you actually need to build the number line, and to do just about anything quantitative.
Zero
Zero represents the absence of things. Zero is also an essential element of our number system. We use zero as a placeholder when writing numbers with more than one digit, and zero lets me know the difference between having 2 dollars and 20 dollars.
Zero as a number on its own is also extremely important in maths. Zero is the 'additive identity', meaning any time I add a number to zero, I get that number back: 3 + 0 = 3.
This property of zero is a central aspect of arithmetic and algebra. Zero sits in the middle of the number line, separating the positive numbers from the negative numbers, and is thus the starting point for building our number system.
One
As zero was the additive identity, one is the multiplicative identity. Take any number and multiply it by one, and you get that number back. 5 x 1 is just 5.
Just using one, we can start to build up the number line. In particular, we can use one to get the natural numbers: 0, 1, 2, 3, 4, 5, and so on. We keep adding one to itself to get these other numbers: 2 is 1 + 1, 3 is 1 + 2, 4 is 1 + 3, and we keep going, right on out to infinity.
The natural numbers are our most basic numbers. We use them to count things. We can also do arithmetic with the natural numbers: if I add or multiply together any two natural numbers, I get another natural number.
I can also sometimes, but not always, subtract two natural numbers, or divide one natural number by another: 10 - 6 = 4, and 12 ÷ 4 = 3. Just using zero and one, and our basic arithmetic operations, we can already do a good amount of maths just using the natural numbers.
Negative One
To start with, it is not always possible to subtract two naturals and get another natural. If all I have to work with are these counting numbers, I have no idea how to parse a statement like 3 - 8.
One of the wonderful things about maths is that, when we are confronted with a limitation like this, we can just expand the system we are working with to remove the limitation. To allow for subtraction, we add -1 to our growing number line.
-1 brings with it all the other negative whole numbers, since multiplying a positive number by -1 gives the negative version of that number: -3 is just -1 x 3. By bringing in negative numbers, we have solved our subtraction problem.
3 - 8 is just -5. Putting together the positive numbers, zero, and our new negative numbers, we get the integers, and we can always subtract two integers from each other and get an integer as the result. The integers provide the anchor points for the number line.
The negative numbers are useful in representing deficits. If I owe the bank $500, I can think of my bank balance as being -500.
We also use negative numbers when we have some scaled quantity where values below zero are possible, such as temperature. In the frozen wasteland of my hometown of Buffalo, we would get a few winter days each year down in the -20° range.
One-tenth
Also, the integers are still arithmetically incomplete. while we can always add, subtract, or multiply two integers and get another integer, we cannot always get an integer by dividing two integers. 8 ÷ 5 makes no sense if all we have are whole numbers.
To deal with this, we add 1/10, or 0.1, to our number line. With 0.1, and the powers of 0.1 - 0.01, 0.001, 0.0001, and so on, we can now represent fractions and decimals. 8 ÷ 5 is now just 1.6.
Dividing any two integers (except for dividing by zero) gets us a decimal number that either terminates, like 1.6, or has a repeating digit, or pattern of digits: 1 ÷ 3 = 0.3333..., with the 3's going out to infinity.
These types of decimals are the rational numbers, since we can form them by taking fractions, or ratios, of two integers. The rational numbers are arithmetically closed, meaning I can take any two rationals and add, subtract, multiply, or divide them, and get back another rational number.
The rational numbers allow us to represent quantities between integers, or fractional quantities. If three friends and I are sharing a cake and splitting it up evenly, we each get 1/4, or 0.25, or 25 percent of the cake. The rationals help us start filling in the spaces between the integers on the number line.
The Square Root of 2
The square root of a number is a second number that, when squared, or multiplied by itself, gives us the original number. So, the square root of 9 is 3, since 32 = 3 x 3 = 9. We can find the square root of any positive number, but with only a few exceptions, these square roots get messy.
The square root of 2 is one such messy number. It is an irrational number, meaning its decimal expansion never terminates or settles into a repeating pattern. The square root of 2 starts out with the digits 1.41421356237..., and then just keeps going in weird and random-looking directions.
It turns out that the square roots of most rational numbers are irrational. The exceptions, like 9, are called perfect squares. Square roots are important in algebra, as they figure into the solutions of many equations. For example, the square root of 2 is a solution to the equation x2 = 2.
By putting the rational and irrational numbers together, we complete our number line. The full range of rational and irrational numbers are called the real numbers, and these are the numbers most commonly used in all manner of calculations.
Now that we've completed our number line, we can look at a couple really important irrational numbers.
Pi(π)
π, the ratio of the circumference of any circle to the circle's diameter, is maybe the most important number used in geometry. π shows up in basically any formula involving circles or spheres, for example, the area of a circle with radius r is πr2, and the volume of a sphere with radius r is (4/3)πr3.
π also features prominently in trigonometry. 2π is the period of the basic trigonometric functions sine and cosine. This means that the functions repeat themselves every 2π units.
These functions, and thus π, are key to working with any periodic or repeating process, particularly in describing things like sound waves.
Like the square root of 2, π is irrational, meaning its decimal expansion never terminates or repeats. The first few digits of π are pretty familiar: 3.14159...
Mathematicians using really big computers have found the first 10 trillion or so digits of π, though for most day to day applications, we only need those first few digits to get sufficiently precise results.
Euler's Number (e)
Euler's number, e, is foundational to working with exponential functions. Exponential functions represent processes that double or halve themselves in a fixed period of time.
If I start with two rabbits, after a month I will have four rabbits, after two months I will have eight rabbits, and after three months I will have 16 rabbits. In general, after n months, I will have 2n+1 rabbits, or 2 multiplied by itself n+1 times.
e is an irrational number, approximately 2.71828..., but like all other irrational numbers, the decimal expansion goes on forever with no repeating pattern. ex is the natural exponential function, the baseline for any other exponential function.
The reason ex is special is a little complicated. For those of you who have seen calculus, you may know that the derivative of ex is ex.
This means that, for any particular value of x that we plug into ex, the rate at which the function is growing at that point is the value of the function. For x = 2, the function ex is growing at a rate of e2. This property is basically unique among functions, making ex very nice to work with mathematically.
ex is useful in working with most exponential processes. One of the most common applications is finding compound interest that is being compounded continuously. With a starting principal of P, and an annual interest rate r, the value of an investment A(t) after t years is given by the formula A = Pert.
The Square Root of -1: i
We mentioned earlier that we can take the square root of any positive number, so now we see what happens with negative numbers. Negative numbers do not have square roots in the real numbers.
Multiplying two negative numbers together gives you a positive number, so squaring any real number results in a positive number, so there's no way to multiply a real number by itself to get a negative number.
But as we saw earlier, when we are confronted with an apparent limitation like this in a number system, we can just expand the number system to remove the limitation.
And so, confronted with the limitation that we do not have a square root for -1, we simply ask ourselves what would happen if we did.
We define i, the imaginary unit, to be that square root, and by throwing in all the other "numbers" we need to make sure that addition, subtraction, multiplication, and division still make sense, we extend the real numbers to form the complex numbers.
The complex numbers have many amazing properties and applications.
Just as we were able to represent the real numbers as a line, we can represent the complex numbers on a plane, with the horizontal axis representing the real part of the number, and the vertical axis an imaginary component, representing the square root of some negative number.
Any polynomial equation has at least one solution in the complex numbers, a result so important that mathematicians call it the fundamental theorem of algebra.
The geometry of the complex plane results in some surprising and elegant results, and has many applications in the physics of electricity and in electrical engineering.http://www.sciencealert.com/here-s-the-only-8-numbers-you-need-to-do-maths
再生核研究所声明311(2016.07.05) ゼロ0とは何だろうか
ここ2年半、ゼロで割ること、ゼロ除算を考えているが、ゼロそのものについてひとりでに湧いた想いがあるので、その想いを表現して置きたい。
数字のゼロとは、実数体あるいは複素数体におけるゼロであり、四則演算で、加法における単位元(基準元)で、和を考える場合、何にゼロを加えても変わらない元として定義される。積を考えて変わらない元が数字の1である:
Wikipedia:ウィキペディア:
初等代数学[編集]
数の 0 は最小の非負整数である。0 の後続の自然数は 1 であり、0 より前に自然数は存在しない。数 0 を自然数に含めることも含めないこともあるが、0 は整数であり、有理数であり、実数(あるいは代数的数、複素数)である。
以下は数 0 を扱う上での初等的な決まりごとである。これらの決まりはxを任意の実数あるいは複素数として適用して構わないが、それ以外の場合については何も言及していないということについては理解されなければならない。
加法:x + 0 = 0 +x=x. つまり 0 は加法に関する単位元である。
減法: x− 0 =x, 0 −x= −x.
乗法:x 0 = 0 ·x= 0.
除法:xが 0 でなければ0⁄x= 0 である。しかしx⁄0は、0 が乗法に関する逆元を持たないために、(従前の規則の帰結としては)定義されない(ゼロ除算を参照)。
実数の場合には、数直線で、複素数の場合には複素平面を考えて、すべての実数や複素数は直線や平面上の点で表現される。すなわち、座標系の導入である。
これらの座標系が無ければ、直線や平面はただ伸びたり、拡がったりする空間、位相的な点集合であると考えられるだろう。― 厳密に言えば、混沌、幻のようなものである。単に伸びたり、広がった空間にゼロ、原点を対応させるということは 位置の基準点を定めること と考えられるだろう。基準点は直線や平面上の勝手な点にとれることに注意して置こう。原点だけでは、方向の概念がないから、方向の基準を勝手に決める必要がある。直線の場合には、直線は点で2つの部分に分けられるので、一方が正方向で、他が負方向である。平面の場合には、原点から出る勝手な半直線を基準、正方向として定めて、原点を回る方向を定めて、普通は時計の回りの反対方向を 正方向と定める。これで、直線や平面に方向の概念が導入されたが、さらに、距離(長さ)の単位を定めるため、原点から、正方向の点(これも勝手に指定できる)を1として定める。実数の場合にも複素数の場合にも数字の1をその点で表す。以上で、位置、方向、距離の概念が導入されたので、あとはそれらを基礎に数直線や複素平面(座標)を考える、すなわち、直線と実数、平面と複素数を1対1に対応させる。これで、実数も複素数も秩序づけられ、明瞭に表現されたと言える。ゼロとは何だろうか、それは基準の位置を定めることと発想できるだろう。
― 国家とは何だろうか。国家意思を定める権力機構を定め、国家を動かす基本的な秩序を定めることであると原理を述べることができるだろう。
数直線や複素平面では 基準点、0と1が存在する。これから数学を展開する原理を下記で述べている:
しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:
19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。
複素平面ではさらに大事な点として、純虚数i が存在するが、ゼロ除算の発見で、最近、明確に認識された意外な点は、実数の場合にも、複素数の場合にも、ゼロに対応する点が存在するという発見である。ゼロに対応する点とは何だろうか?
直線や平面で実数や複素数で表されない点が存在するであろうか? 無理して探せば、いずれの場合にも、原点から無限に遠ざかった先が気になるのではないだろうか? そうである立体射影した場合における無限遠点が正しくゼロに対応する点ではないかと発想するだろう。その美しい点は無限遠点としてその美しさと自然さ故に100年を超えて数学界の定説として揺るぐことはなかった。ゼロに対応する点は無限遠点で、1/0=∞ と考えられてきた。オイラー、アーベル、リーマンの流れである。
ところが、ゼロ除算は1/0=0 で、実は無限遠点はゼロに対応していることが確認された。
直線を原点から、どこまでも どこまでも遠ざかって行くと、どこまでも行くが、その先まで行くと(無限遠点)突然、ゼロに戻ることを示している。これが数学であり、我々の空間であると考えられる。この発見で、我々の数学の結構な部分が修正、補充されることが分かりつつある。
ゼロ除算は可能であり、我々の空間の認識を変える必要がある。ゼロで割る多くの公式である意味のある世界が広がってきた。それらが 幾何学、解析学、代数学などと調和して数学が一層美しい世界であることが分かってきた。
全ての直線はある意味で、原点、基準点を通ることが示されるが、これは無限遠点の影が投影されていると解釈され、原点はこの意味で2重性を有している、無限遠点と原点が重なっている現象を表している。この2重性は 基本的な指数関数y=e^x が原点で、0 と1 の2つの値をとると表現される。このことは、今後大きな意味を持ってくるだろう。
古来、ゼロと無限の関係は何か通じていると感じられてきたが、その意味が、明らかになってきていると言える。
2点から無限に遠い点 無限遠点は異なり、無限遠点は基準点原点の指定で定まるとの認識は面白く、大事ではないだろうか。
以 上
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する
アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更は かつて無かった事である。
そこで、最近の成果を基に現状における学術書、教科書の変更すべき大勢を外観して置きたい。特に、大学学部までの初等数学において、日本人の寄与は皆無であると言えるから、日本人が数学の基礎に貢献できる稀なる好機にもなるので、数学者、教育者など関係者の注意を換気したい。― この文脈では稀なる日本人数学者 関孝和の業績が世界の数学に活かせなかったことは 誠に残念に思われる。
先ず、数学の基礎である四則演算において ゼロでは割れない との世の定説を改め、自然に拡張された分数、割り算で、いつでも四則演算は例外なく、可能であるとする。山田体の導入。その際、小学生から割り算や分数の定義を除算の意味で 繰り返し減法(道脇方式)で定義し、ゼロ除算は自明であるとし 計算機が割り算を行うような算法で 計算方法も指導する。― この方法は割り算の簡明な算法として児童に歓迎されるだろう。
反比例の法則や関数y=1/xの出現の際には、その原点での値はゼロであると 定義する。その広範な応用は 学習過程の進展に従って どんどん触れて行くこととする。
いわゆるユークリッド幾何学の学習においては、立体射影の概念に早期に触れ、ゼロ除算が拓いた新しい空間像を指導する。無限、無限の彼方の概念、平行線の概念、勾配の概念を変える必要がある。どのように、如何に、カリキュラムに取り組むかは、もちろん、慎重な検討が必要で、数学界、教育界などの関係者による国家的取り組み、協議が必要である。重要項目は、直角座標系で y軸の勾配はゼロであること。真無限における破壊現象、接線などの新しい性質、解析幾何学との美しい関係と調和。すべての直線が原点を代数的に通り、平行な2直線は原点で代数的に交わっていること。行列式と破壊現象の美しい関係など。
大学レベルになれば、微積分、線形代数、微分方程式、複素解析をゼロ除算の成果で修正、補充して行く。複素解析学におけるローラン展開の学習以前でも形式的なローラン展開(負べき項を含む展開)の中心の値をゼロ除算で定義し、広範な応用を展開する。特に微分係数が正や負の無限大の時、微分係数をゼロと修正することによって、微分法の多くの公式や定理の表現が簡素化され、教科書の結構な記述の変更が要求される。媒介変数を含む多くの関数族は、ゼロ除算 算法で統一的な視点が与えられる。多くの公式の記述が簡単になり、修正される。
複素解析学においては 無限遠点はゼロで表現されると、コペルニクス的変更(無限とされていたのが実はゼロだった)を行い、極の概念を次のように変更する。極、特異点の定義は そのままであるが、それらの点の近傍で、限りなく無限の値に近づく値を位数まで込めて取るが、特異点では、ゼロ除算に言う、有限確定値をとるとする。その有限確定値のいろいろ幾何学な意味を学ぶ。古典的な鏡像の定説;原点の 原点を中心とする円の鏡像は無限遠点であるは、誤りであり、修正し、ゼロであると いろいろな根拠によって説明する。これら、無限遠点の考えの修正は、ユークリッド以来、我々の空間に対する認識の世界史上に置ける大きな変更であり、数学を越えた世界観の変更を意味している。― この文脈では天動説が地動説に変わった歴史上の事件が想起される。
ゼロ除算は 物理学を始め、広く自然科学や計算機科学への大きな影響が期待される。しかしながら、ゼロ除算の研究成果を教科書、学術書に遅滞なく取り入れていくことは、真智への愛、真理の追究の表現であり、四則演算が自由にできないとなれば、人類の名誉にも関わることである。ゼロ除算の発見は 日本の世界に置ける顕著な貢献として世界史に記録されるだろう。研究と活用の推進を 大きな夢を懐きながら 要請したい。
以 上
追記:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory, 6, 51-58.
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdfDOI:10.12732/ijam.v27i2.9.
興味深く読みました:
再生核研究所声明310(2016.06.29) ゼロ除算の自明さについて
人間の感性の観点から、ゼロ除算の自明さについて触れて置きたい。ゼロ除算の発見は誠に奇妙な事件である。まずは、近似の方法から自然に導かれた結果であるが、結果が全然予想されたことのない、とんでもないことであったので、これは何だと衝撃を受け、相当にその衝撃は続いた。まずは、数学的な論理に間違いがないか、厳重に点検を行い、それでも信じられなかったので、多くの友人、知人に意見を求めた。高橋眞映山形大学名誉教授のゼロ除算の一意性定理は大事だったので、特に厳重に検討した。多くの友人も厳重に時間をかけて検討した経過がよく思い出される。その他、いろいろな導入が発見されても、信じられない心境は1年を超えて続いたと言える。数学的に厳格に、論理的に確立しても 心情的に受け入れられない感情 が永く続いた。そのような心境を相当な人たちが抱いたことが国際的な交流でも良く分かる。中々受け入れらない、ゼロ除算の結果はそうだと受け入れられない、認められない空気であった。ゼロ除算の発展は世界史上の事件であるから、経過など出来るだけ記録するように努めてきた。
要するに、世界中の教科書、学術書、定説と全く違う結果が 世に現れたのである。慎重に、慎重に畏れを抱いて研究を進めたのは 当然である。
そこで、証拠のような具体例の発見に努めた。明確な確信を抱くために沢山の例を発見することとした。最初の2,3件の発見が特に難しかった。内容は次の論文に、招待され、出版された: http://www.ijapm.org/show-63-504-1.html :
ゼロ除算を含む、山田体の発見、
原点の鏡像が(原点に中心をもつ円に関する)無限遠点でなく ゼロであること、
x,y直角座標系で y軸の勾配がゼロであること、
同軸2輪回転からの、ゼロ除算の物理的な意味付け、
これらの成果を日本数学会代数学分科会で発表し、また、ゼロ除算の解説(2015.1.14)を1000部印刷広く配布してきた。2年間の時間の経過とともに我々の数学として、実在感が確立してきた。その後、広範にゼロ除算がいろいろなところに現れていることが沢山発見され、やがて、ゼロ除算は自明であり数学の初歩的な欠落部分であるとの確信を深めるようになってきている。
単に数学の理論だけでなく、いろいろな具体例が認識の有り様を、感性を変えることが分かる。そこで、何もかも分かったという心境に至るには、素朴な具体例で、何もかも当たり前であるという心理状況に至ることが大事であるが、それは、環境で心自体が変わる様をしめしている。本来1つの論文であった原稿は 招待されたため次の2つの論文に出版される:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra
& Matrix Theory, 6, 51-58.
Division by Zero z/0 = 0 in Euclidean Spaces:
International Journal of Mathematics and Computation 9 Vol. 28; Issue 1, 2017)。
沢山の具体例が述べられていて、ゼロ除算が基本的な数学であることは、既に確立していると考えられる。沢山の具体例が、そのような心境に至らしめている。
ゼロ除算の自明さを論理ではなく、簡単に 直感的な説明として述べたい。
基本的な関数y=1/xを考え、そのグラフを見よう。原点の値は考えないとしているが、考えるとすれば、値は何だろうか? ゼロではないか と 思えば、ゼロ除算は正解である。それで十分である。その定義から、応用や意味付けを検討すれば良い。― 誰でも値は ゼロであると考えるのではないだろうか。中心だから、真ん中だから。あるいは平均値だからと考えるのではないだろうか。それで良い。
0/0=0 には違う説明が必要である。条件付き確率を考えよう。 A が起きたという条件の下で、B が起きる条件付き確率を考えよう。 その確率P(B|A) は AとBの共通事象ABの確率P(AB) と A が起きる確率P(A)との比 P(B|A)=P(AB)/P(A) で与えられる。もし、Aが起きなければ、すなわち、P(A) =0 ならば、もちろん、P(AB) =0. 意味を考えても分かるようにその時当然、P(B|A) =0である。 すなわち、0/0=0は 当たり前である。
0 件のコメント:
コメントを投稿