2016年4月27日水曜日

有点笨”的数学大师迈克尔 弗里德曼

有点笨”的数学大师迈克尔 弗里德曼
赛先生2016-04-25 20:23:40阅读(206) 评论(0)
  迈克尔·弗里德曼
  作者Erica Klarreich
  翻译Lineker
  校对雨遇
  如果以家族标准来评判,迈克尔·弗里德曼(Michael Freedman)可能会被认为有些笨拙。菲尔兹奖、美国国家科学奖和麦克阿瑟天才奖固然光彩夺目,但无法抹杀的事实在于,迈克尔·弗里德曼在十七岁“高龄”才读完了高中——这比他的父亲本·弗里德曼迟了四岁,比叔叔戴维·弗里德曼迟了五岁。和迈克尔在差不多相同年龄完成高中学业的唯一一位叔叔是托比·弗里德曼,他在家族中被人亲切地称之为“笨蛋托比”。
  “我知道自己有多迟钝。”弗里德曼说。
  不过话说回来,如果这样的家庭氛围偶尔会让人有些惶恐,那么反过来看,它同时也具有高度的激励性。弗里德曼的父亲是一位业余数学家(后来拿了一个数学方面的博士学位)。受父亲的影响,弗里德曼在读完高中时,已经深深爱上了数学研究。“我觉得,在刚入学的大学新生中,能知道数学家究竟研究些什么的人可能还不到百分之一,但我恰好是其中之一,这都是我父亲的功劳。”他说。
  弗里德曼最初是在在加州大学伯克利分校开始大学生涯,准备专攻艺术。这是在听从了他母亲的建议之后做出的决定。不过,他本人对于这一选择是否得当依然顾虑重重。
  “举个例子,像图片的大小会否影响画面效果这样的问题都会困扰我。”弗里德曼回忆道。“如果打算全身心投入艺术学习,我就想搞清楚这个工作究竟对我意味着什么,我想知道好作品和差作品之间究竟差别在哪里。但连画作大小为什么重要这样的问题我都回答不了,这让我觉得艺术专业太过随性了。”
  在和艺术系主任进行了一番徒劳无功的讨论之后,弗里德曼把专业换成了数学。由于来自于一个天才辈出的家族,他决定跳过第一年的微积分课程以及微分方程等相关科目,直接学习抽象代数、拓扑学和测度论这些高级课程,这是一个影响了其随后几年研究方向的决定。
  当时的弗里德曼已然是雄心万丈。“我知道自己的能力并不均衡,很多数学领域我都没办法理解。”他说,“但是我觉得在某些领域我能够做到异常专注,而且能看到别人看不到的东西,我认为如果找准了正确的问题,我就能在这个领域有所建树。”
  不过,弗里德曼很快发现,数学系对于语言文字水平的要求让自己陷入了困境。仅一年之后,他就转去普林斯顿大学开始了研究生课程的学习,那里对于语言水平的要求没那么严格。
  为了上学,弗里德曼需要从加利福尼亚开车前往新泽西。一路上,很多时候他都会在方向盘上摊开一本数学教材边开车边读书。尽管如此,研究生院的学习还是令他感到有些准备不足。弗里德曼回忆到,在普林斯顿上的第一节课,他的教授唐纳德·斯宾塞(Donald Spencer)开场头一句话就是:“设S为矢量丛的截面芽层。”弗里德曼心想:“嗯,还好,至少我还知道什么叫矢量。”
  尽管如此,在三年的学习过程中,弗里德曼还是在比尔·布劳德(Bill Browder)的指导下完成了一篇拓扑学方面的论文,研究了在拉伸或扭曲时依然保持不变的形状的性质。但不幸的是,弗里德曼了解到另一位数学家已经证明出了相同的结论。于是在布劳德的建议下,弗里德曼在研究生学院又多待了一年。“那实际上是我做过的最好决定,”弗里德曼说,“在研究生院的第四年,一切才开始有了豁然开朗的感觉。在听讲座时,原来只能听懂10%,但现在剩下的90%突然一下子全都理解了。”
  ◆ ◆ ◆ ◆ ◆
  毕业之后,弗里德曼先是在加州大学伯克利分校和普林斯顿高等研究院(Institute of Advanced Study)担任访问学者,后来又在加州大学圣迭戈分校接受了一份终身教职的工作。
  加州大学伯克利分校的数学家罗比恩·卡比(Robion Kirby)回忆说,他当时觉得弗里德曼是凭借了一点运气才获得了圣迭戈分校的工作,因为弗里德曼缺少一份令人刮目相看的履历。他表示,拒绝为他提供终身教职工作的伯克利分校数学系,在当时并未意识到弗里德曼在未来会有怎样的发展。
  事实上,还在伯克利工作的时候,弗里德曼就已经对安德鲁·卡森(Andrew Casson)的理论开始着迷了,后者提出了一个在四维流形(four-manifolds)内构造柄体结构的无限过程。尽管四维流形无法像三维形状那样大致可视化,但它们一直是弗里德曼最喜欢的研究对象,他甚至将四维称之为“最有趣的维度”。
  弗里德曼发现,在三维以及更低的维度,某种形状的拓扑学主要由几何层面的考量所决定。这些几何性质包括受形状扭曲而改变的属性,譬如长度和角度。相比之下,在五维和更高维度,形状的几何表征就不再严重制约其拓扑学上的可能性了。
  “四维恰好是几何和拓扑开始彼此撕裂的一个维度,这就导致在这两个领域上都会出现异常漂亮而复杂的研究课题。”弗里德曼说。
  弗里德曼确信卡森的结构可以被进一步推广,使研究者能够了解四维流形的更多性质。此后的七年里,他差不多花了一半的时间来解决这个充满挑战性的研究课题,其余的时间则花在了其他更靠谱的研究赌注上。
  到了1981年,利用卡森的框架,弗里德曼已经成功推导出了现在被认为是四维流形的基石性理论之一,即无孔特殊类型紧致四维流形的完全分类。更重要的是,他的成果证明了著名的庞加莱猜想在四维成立。简单来讲,四维庞加莱猜想理论表明,任何可以逐渐弯曲、收缩和膨胀为一个四维球体的紧致四维流形,在拓扑上实际等同于这个四维球体。
  弗里德曼回忆到,起初他的结果似乎美好得有些不真实。“我花了好几个星期的时间才确信这个故事说得通。”他说。
  1981年夏,弗里德曼在一次会议上公布了自己的发现。卡比( Kirby)就是听众之一,他记得自己当时想:“他从哪来的胆量敢宣布这样的发现?他不可能看好这个疯狂的结论。”
  弗里德曼的成果让一群专家们震惊不已,他们在会议举办地来来回回讨论了约一个星期,为的就是指出弗里德曼论证过程中的细节错误。在那一周结束前,他们最终达成了一致意见:弗里德曼的定理正确无误。
  卡比表示,这项让弗里德曼获得1986年菲尔兹奖的研究,是由一步接一步的大胆论证过程所组成的。这个结果是“我所知晓的最完美的一项数学成就。”卡比说,“而且绝无仅有。”依据卡比的说法,如果弗里德曼没有想出该如何解决论证中的不同模块,那么即便三十多年后的今天,他的分类结果依然有可能处于悬而未决的状态。
  ◆ ◆ ◆ ◆ ◆
  在取得了里程碑式的成就之后,弗里德曼决定回归校园,去弥补自身数学教育中的空白。“在获得菲尔兹奖之后,我在某种程度上几乎被视为数学的化身,可以说,如果到现在我还是什么也不懂,那也有点太傻了。”他说。
  这番自贬的言辞便是弗里德曼的典型个性,同事凯文·沃尔克(Kevin Walker)做过如是评价,他在加州圣巴巴拉的微软Station Q部门与弗里德曼有过合作。“他总是不吝美词地盛赞其他数学家。”沃尔克说,“但如果你试图恭维他,他就会很快转移话题。”
  沃尔克表示,弗里德曼已经成了启迪和智慧的源泉。因为他的兴趣是如此广泛,而且还掌握了直达问题核心的诀窍。“如果要给一篇六十页的论文写个五分钟的总结,我绝对找不到比迈克尔还要完美的人选,他会直截了当地说:‘喏,论文的核心观点都在这里了。’”沃尔克说。
  1988年,弗里德曼在哈佛大学出席了一场被其称之为可改变人生的研讨会,研讨会的主题是讨论爱德华·威腾(Edward Witten,现供职于普林斯顿高等研究院)近几年的工作,这位数学家将扭结和链环的拓扑理论与某一物理学领域联系了起来,即现在的所谓拓扑量子场论。弗里德曼当时已经意识到,扭结或链环的“琼斯多项式”计算是一个极其困难的计算问题,但解决这一难题的方案反过来又可以为解决其他很多计算问题提供思路。威腾的研究成果似乎表明,特定物理系统可瞬间完成琼斯多项式的计算。
  “我们应该构建一台以威腾所描述的物理学为基础的电脑,它可以用来解决那些极其复杂的问题,我很快便被这样的想法所深深吸引。”他说。
  在随后的十年里,弗里德曼全身心地投入到了这一课题之中,苦心进行相关的物理学研究。“我对于物理学还是没怎么入门。”他说。
  弗里德曼曾经的学生,现在就职于维吉尼亚大学的斯拉瓦·克鲁斯卡尔(Slava Krushkal)回忆说,弗里德曼所带的研究生们亲眼见证了这种自我教育的过程。弗里德曼每周要为研究生举办四场拓扑学和物理学研讨会,在会上他经常会围绕着自己当下的研究工作进行演讲。“他会思考一些问题,然后开一场讲座——虽然结论不一定总是正确,但这是一种了解像弗里德曼这样的大师如何思考问题的很好方式。”克鲁斯卡尔说。
  1997年,弗里德曼接受了微软提供的一份职位,2005年以来他一直主导着Station Q的研究工作。Station Q相当于微软的一个前沿部门,专注于拓扑量子计算领域的研究。
  “在职业生涯末期还决意投身其他领域的学习,据我所知,这样的数学家并不多见。”沃尔克说,“一旦成为某一领域的专家,大多数数学家都会固守于此,既然他们已经投入了大量的时间,那为什么还要退回起点重头再来?”
  克鲁斯卡尔表示,很多数学家执着于某一课题,撰写大量的技术论文以进一步拓展该领域的研究技巧,弗里德曼不同于他们,对于这样的做法他不感兴趣。相反,“他的风格在于提出一些非常具有原创性的理念。”克鲁斯卡尔说,“这与渐进式的风格正好相反。”
  弗里德曼还是一位狂热的攀岩和登山爱好者,其勇敢但却深思熟虑的冒险经历简直数不胜数。
  沃尔克曾经多次加入弗里德曼的户外冒险, 他说:“我能记得至少有三次,因为拉得过猛,听到他的肌腱发出噼啪的声音。他的户外运动个性就是他数学研究个性的真实写照,属于异常顽强的那种。
  “跟他一起爬山非常安全,不可能会有什么生命危险,但那些会让你发冷酸胀或不舒服的小挫折,肯定是不可避免的。”沃克尔补充说,“他只会抱着不登顶不罢休的目标,一步一步继续前行。”
  原文地址:https://www.simonsfoundation.org/science_lives_video/michael-freedman/
  附录
  一张送弗里德曼进普林斯顿研究生院的照片
  王正汉/文
  
  大学一年级,弗里德曼被法语语言课困扰着。和他经常一起下围棋的一位天文学博士后建议他直接申请普林斯顿数学系研究生院,因为那里没人会关心法语课。由于没有学过微积分,而且已经错过了第一轮,弗里德曼就写了一份关于纽结论的论文放入申请材料里。发出之前,弗里德曼的妈妈坚持让他把这张照片加上。那时弗里德曼是一个非常活跃的攀岩者,是1981年的美国职业攀岩冠军。他父母写的一部小说“Mr. Mike”用他这张攀岩的照片作为封面。
  当申请到达普林斯顿时,研究生招生委员们正在决定资助已经录取的学生。秘书进来把弗里德曼的申请递给主席Ralph Fox。Fox打开信,照片落到地上。Fox捡起来,看了一眼说:“我们也加招这个人。”普林斯顿教授 Ed. Nelson发誓这事是真的。
  延伸阅读
  ① 纯粹数学的雪崩效应:庞加莱猜想何以造福了精准医疗?
  ② 烧脑的几何理论|《三体》中的“降维攻击”到底啥意思?
  ③ 视频 | 拓扑为何?
  投稿、提供新闻线索、转载授权请联系:iscientists@126.com
  商务合作事宜请联系:dll2004@163.com
  更多精彩文章:您可以回复"年份+月份",如201510即可获取月度文章,或返回主页点击子菜单获取最新文章、往期文章或直达赛先生微博。谢谢!
  
  微信号:iscientists
  阅读原文阅读
  加载中http://it.sohu.com/20160425/n446118709.shtml

Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics\\
}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\

\date{\today}
\maketitle
{\bf Abstract: } In this announcement, we shall introduce the zero division $z/0=0$. The result is a definite one and it is fundamental in mathematics.
\bigskip
\section{Introduction}
%\label{sect1}
By a natural extension of the fractions
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, we, recently, found the surprising result, for any complex number $b$
\begin{equation}
\frac{b}{0}=0,
\end{equation}
incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices, and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers. The result is a very special case for general fractional functions in \cite{cs}. 
The division by zero has a long and mysterious story over the world (see, for example, google site with division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,
Sin-Ei, Takahasi (\cite{taka}) (see also \cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing some full extensions of fractions and by showing the complete characterization for the property (1.2). His result will show that our mathematics says that the result (1.2) should be accepted as a natural one:
\bigskip
{\bf Proposition. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ such that
$$
F (b, a)F (c, d)= F (bc, ad)
$$
for all
$$
a, b, c, d \in {\bf C }
$$
and
$$
F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $
$$
F (b, 0) = 0.
$$
}
\medskip
\section{What are the fractions $ b/a$?}
For many mathematicians, the division $b/a$ will be considered as the inverse of product;
that is, the fraction
\begin{equation}
\frac{b}{a}
\end{equation}
is defined as the solution of the equation
\begin{equation}
a\cdot x= b.
\end{equation}
The idea and the equation (2.2) show that the division by zero is impossible, with a strong conclusion. Meanwhile, the problem has been a long and old question:
As a typical example of the division by zero, we shall recall the fundamental law by Newton:
\begin{equation}
F = G \frac{m_1 m_2}{r^2}
\end{equation}
for two masses $m_1, m_2$ with a distance $r$ and for a constant $G$. Of course,
\begin{equation}
\lim_{r \to +0} F =\infty,
\end{equation}
however, in our fraction
\begin{equation}
F = G \frac{m_1 m_2}{0} = 0.
\end{equation}
\medskip


Now, we shall introduce an another approach. The division $b/a$ may be defined {\bf independently of the product}. Indeed, in Japan, the division $b/a$ ; $b$ {\bf raru} $a$ ({\bf jozan}) is defined as how many $a$ exists in $b$, this idea comes from subtraction $a$ repeatedly. (Meanwhile, product comes from addition).
In Japanese language for "division", there exists such a concept independently of product.
H. Michiwaki and his 6 years old girl said for the result $ 100/0=0$ that the result is clear, from the meaning of the fractions independently the concept of product and they said:
$100/0=0$ does not mean that $100= 0 \times 0$. Meanwhile, many mathematicians had a confusion for the result.
Her understanding is reasonable and may be acceptable:
$100/2=50 \quad$ will mean that we divide 100 by 2, then each will have 50.
$100/10=10 \quad$ will mean that we divide 100 by10, then each will have 10.
$100/0=0 \quad$ will mean that we do not divide 100, and then nobody will have at all and so 0.
Furthermore, she said then the rest is 100; that is, mathematically;
$$
100 = 0\cdot 0 + 100.
$$
Now, all the mathematicians may accept the division by zero $100/0=0$ with natural feelings as a trivial one?
\medskip
For simplicity, we shall consider the numbers on non-negative real numbers. We wish to define the division (or fraction) $b/a$ following the usual procedure for its calculation, however, we have to take care for the division by zero:
The first principle, for example, for $100/2 $ we shall consider it as follows:
$$
100-2-2-2-,...,-2.
$$
How may times can we subtract $2$? At this case, it is 50 times and so, the fraction is $50$.
The second case, for example, for $3/2$ we shall consider it as follows:
$$
3 - 2 = 1
$$
and the rest (remainder) is $1$, and for the rest $1$, we multiple $10$,
then we consider similarly as follows:
$$
10-2-2-2-2-2=0.
$$
Therefore $10/2=5$ and so we define as follows:
$$
\frac{3}{2} =1 + 0.5 = 1.5.
$$
By these procedures, for $a \ne 0$ we can define the fraction $b/a$, usually. Here we do not need the concept of product. Except the zero division, all the results for fractions are valid and accepted.
Now, we shall consider the zero division, for example, $100/0$. Since
$$
100 - 0 = 100,
$$
that is, by the subtraction $100 - 0$, 100 does not decrease, so we can not say we subtract any from $100$. Therefore, the subtract number should be understood as zero; that is,
$$
\frac{100}{0} = 0.
$$
We can understand this: the division by $0$ means that it does not divide $100$ and so, the result is $0$.
Similarly, we can see that
$$
\frac{0}{0} =0.
$$
As a conclusion, we should define the zero divison as, for any $b$
$$
\frac{b}{0} =0.
$$
See \cite{kmsy} for the details.
\medskip

\section{In complex analysis}
We thus should consider, for any complex number $b$, as (1.2);
that is, for the mapping
\begin{equation}
w = \frac{1}{z},
\end{equation}
the image of $z=0$ is $w=0$. This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere.
However, we shall recall the elementary function
\begin{equation}
W(z) = \exp \frac{1}{z}
\end{equation}
$$
= 1 + \frac{1}{1! z} + \frac{1}{2! z^2} + \frac{1}{3! z^3} + \cdot \cdot \cdot .
$$
The function has an essential singularity around the origin. When we consider (1.2), meanwhile, surprisingly enough, we have:
\begin{equation}
W(0) = 1.
\end{equation}
{\bf The point at infinity is not a number} and so we will not be able to consider the function (3.2) at the zero point $z = 0$, meanwhile, we can consider the value $1$ as in (3.3) at the zero point $z = 0$. How do we consider these situations?
In the famous standard textbook on Complex Analysis, L. V. Ahlfors (\cite{ahlfors}) introduced the point at infinity as a number and the Riemann sphere model as well known, however, our interpretation will be suitable as a number. We will not be able to accept the point at infinity as a number.
As a typical result, we can derive the surprising result: {\it At an isolated singular point of an analytic function, it takes a definite value }{\bf with a natural meaning.} As the important applications for this result, the extension formula of functions with analytic parameters may be obtained and singular integrals may be interpretated with the division by zero, naturally (\cite{msty}).
\bigskip
\section{Conclusion}
The division by zero $b/0=0$ is possible and the result is naturally determined, uniquely.
The result does not contradict with the present mathematics - however, in complex analysis, we need only to change a little presentation for the pole; not essentially, because we did not consider the division by zero, essentially.
The common understanding that the division by zero is impossible should be changed with many text books and mathematical science books. The definition of the fractions may be introduced by {\it the method of Michiwaki} in the elementary school, even.
Should we teach the beautiful fact, widely?:
For the elementary graph of the fundamental function
$$
y = f(x) = \frac{1}{x},
$$
$$
f(0) = 0.
$$
The result is applicable widely and will give a new understanding for the universe ({\bf Announcement 166}).
\medskip
If the division by zero $b/0=0$ is not introduced, then it seems that mathematics is incomplete in a sense, and by the intoduction of the division by zero, mathematics will become complete in a sense and perfectly beautiful.
\bigskip


section{Remarks}
For the procedure of the developing of the division by zero and for some general ideas on the division by zero, we presented the following announcements in Japanese:
\medskip
{\bf Announcement 148} (2014.2.12):  $100/0=0, 0/0=0$  --  by a natural extension of fractions -- A wish of the God
\medskip
{\bf Announcement 154} (2014.4.22): A new world: division by zero, a curious world, a new idea
\medskip
{\bf Announcement 157} (2014.5.8): We wish to know the idea of the God for the division by zero; why the infinity and zero point are coincident?
\medskip
{\bf Announcement 161} (2014.5.30): Learning from the division by zero, sprits of mathematics and of looking for the truth
\medskip
{\bf Announcement 163} (2014.6.17): The division by zero, an extremely pleasant mathematics - shall we look for the pleasant division by zero: a proposal for a fun club looking for the division by zero.
\medskip
{\bf Announcement 166} (2014.6.29): New general ideas for the universe from the viewpoint of the division by zero
\medskip
{\bf Announcement 171} (2014.7.30): The meanings of product and division -- The division by zero is trivial from the own sense of the division independently of the concept of product
\medskip
{\bf Announcement 176} (2014.8.9):  Should be changed the education of the division by zero
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
S. Koshiba, H. Michiwaki, S. Saitoh and M. Yamane,
An interpretation of the division by zero z/0=0 without the concept of product
(note).
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{msty}
H. Michiwaki, S. Saitoh, M. Takagi and M. Yamada,
A new concept for the point at infinity and the division by zero z/0=0
(note).
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/
\bibitem{taka}
S.-E. Takahasi,
{On the identities $100/0=0$ and $ 0/0=0$}
(note).
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields. (submitted)
\end{thebibliography}
\end{document}
アインシュタインも解決できなかった「ゼロで割る」問題
http://matome.naver.jp/odai/2135710882669605901
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/
私は数学を信じない。 アルバート・アインシュタイン / I don't believe in mathematics. Albert Einstein→ゼロ除算ができなかったからではないでしょうか。
1423793753.460.341866474681。

Einstein's Only Mistake: Division by Zero
http://refully.blogspot.jp/2012/05/einsteins-only-mistake-division-by-zero.html










0 件のコメント:

コメントを投稿