2016年1月12日火曜日

アインシュタイン方程式 一般相対性理論

アインシュタイン方程式
一般相対性理論
G_{\mu \nu} + \Lambda g_{\mu \nu}= {8\pi G\over c^4} T_{\mu \nu}
アインシュタイン方程式
入門
数学的定式化
関連書籍
[表示]基本概念
[表示]現象
[表示]方程式
[表示]高度な理論
[表示]解
[表示]科学者
表・話・編・歴
一般相対性理論におけるアインシュタイン方程式(アインシュタインほうていしき、英: Einstein's equations)[1]とは、万有引力・重力場を記述する場の方程式を言う。アルベルト・アインシュタインによって導入された。
アイザック・ニュートンが導いた万有引力の法則を、強い重力場に対して適用できるように拡張した方程式であり、対象とする物理的現象は中性子星やブラックホールなどの高密度・大質量天体や、宇宙全体の幾何学などになる。概略や導出・応用などの詳しい説明は、一般相対性理論の項を参照のこと。
目次 [非表示] 
1 概要
2 性質
2.1 アインシュタインテンソルの発散は0
3 宇宙項
4 関連項目
5 脚注
6 参考文献
概要[編集]
一般相対性理論によれば、大質量の物体は周囲の時空を歪ませる。すなわち、重力とは時空の歪みであるとして説明される。その理論的な帰結・骨子となるのが、次のように表されるアインシュタイン方程式である。
G_{\mu\nu}+\Lambda g_{\mu\nu}=\kappa T_{\mu\nu}
左辺は時空がどのように曲がっているのか(時空の曲率)を表す幾何学量であり、右辺は物質場の分布を表す量である。
おおざっぱに言えば、星のような物質またはエネルギーを右辺に代入すれば、その物質の周りの時空がどういう風に曲がっているかを読みとることができる式である。空間の歪みが決まれば、その空間中を運動する物質の運動方程式(測地線方程式)が決まるので、物質分布も変動することになる。
左辺の G_{\mu\nu}=R_{\mu\nu}-\tfrac{1}{2}R\,g_{\mu\nu} はアインシュタイン・テンソルと呼ばれる。\Lambda は宇宙定数であり、この項は宇宙項と呼ばれる。R_{\mu\nu} はリッチテンソル、R はスカラー曲率である。どちらも時空の計量テンソル g_{\mu\nu} の微分で書かれる幾何学量である。つまりアインシュタイン方程式は計量についての連立偏微分方程式の形をしている。
右辺の T_{\mu\nu} はエネルギー・運動量テンソルである。係数 \kappa はアインシュタインの重力定数と呼ばれ、ニュートンの重力定数 G と \kappa =\tfrac{8\pi}{c^4} G の関係にある(π は円周率、c は光速)。
アインシュタイン方程式はテンソルの方程式であり、時空の添字 μ,ν はそれぞれに時間1次元と空間3次元の4成分を動き 10 本の方程式を与える。このうち、4本はエネルギー保存則と運動量保存則に対応するものであり、G_{\mu\nu} の空間成分に関係する残りの6本の方程式が時空の運動方程式に相当する。これらは時間微分2階の偏微分方程式6本(あるいは時間微分1階の偏微分方程式12本)であるが、座標の選択の自由度(ゲージの自由度)が4つ、保存則を満たしながら時間発展を行うための拘束条件が4つあると考えれば、たとえ真空中であっても1階の微分方程式4本(2階に直せば2本)の自由度が残る。この自由度は時空の歪みを周囲に波として伝える「重力波」のモードが2つあることを意味している。
性質[編集]
アインシュタインテンソルの発散は0[編集]
ビアンキの第二恒等式
\nabla_l R_{k j i}{}^h + \nabla_j R_{l k i}{}^h + \nabla_k R_{j l i}{}^h = 0
から、l = h = a とおいて縮約を行うと
\nabla_a R_{k j i}{}^a + \nabla_j R_{a k i}{}^a + \nabla_k R_{j a i}{}^a
= \nabla_a R_{k j i}{}^a + \nabla_j R_{k i} - \nabla_k R_{j i} = 0
この式に基本計量テンソル gj i を掛け合わせると、計量条件(またはリッチの補定理)\nabla_h g^{j i} = 0 から
g^{j i}\nabla_a R_{k j i}{}^a + g^{j i}\nabla_j R_{k i} - g^{j i}\nabla_k R_{j i} = \nabla_a \left( g^{j i} R_{k j i}{}^a \right) + \nabla_j \left( g^{j i} R_{k i} \right) - \nabla_k \left( g^{j i} R_{j i} \right) = 0
となる。ここで上式の各項について
g^{j i} R_{k j i}{}^a = g^{j i} R_{k j i f} g^{f a} = g^{j i} R_{j k f i} g^{f a} = R_{k f} g^{f a} = R_k{}^a
g^{j i} R_{j i} = R
となることから、上式から
\nabla_a R_k{}^a + \nabla_j R_k{}^j - \nabla_k R = 2\nabla_a R_k{}^a - \nabla_k R = 0
を得る。したがって、アインシュタインテンソルの添え字を一つ上にあげたものを
G_{i}{}^{j} = R_{i}{}^{j} - {1 \over 2} R g_{ik}g^{kj}
とすると、その発散 \nabla_a G_{i}{}^a について
\nabla_a G_{i}{}^a = \nabla_a R_{i}{}^{a} - {1 \over 2}\nabla_a R \delta_i^a = \nabla_a R_{i}{}^{a} - {1 \over 2}\nabla_i R = 0 
が成り立つ。
宇宙項[編集]
アインシュタインの1916年のオリジナル論文には含まれておらず、アインシュタイン方程式は G_{\mu\nu}=\kappa T_{\mu\nu} の形で書かれていた。アインシュタインは、1917年の論文で方程式に「宇宙項」を加えて G_{\mu\nu}+\Lambda g_{\mu\nu}=\kappa T_{\mu\nu} の形に書き換えた。\Lambda は宇宙定数を表す。宇宙項は、正負の符号によっては、重力に対する反重力(万有斥力)として機能する。
アインシュタインがこの項を導入した理由については諸説あるが、一般に有名なのは、彼自身が信じる静止宇宙モデルを実現するためという説である。1917年論文の宇宙モデルは重力と宇宙項による反重力とが釣り合う静止宇宙だった。当時、宇宙膨張は発見されていなかった。しかしこのモデルは不安定であり、僅かな摂動で膨張または収縮に転じる(静止宇宙とならない)性質を持つことが後にアレクサンドル・フリードマンにより示された。
1929年にハッブルが宇宙の膨張を観測的に示した後、1931年にはアインシュタイン自身により「人生最大の過ち」として消去された。しかしながら、近年の宇宙のインフレーション理論や素粒子物理学との関連の中で、宇宙項(に相当する斥力)を再び導入して考えることが通常行われており、むしろ重要な意味を与えている場合がある。観測的宇宙論において、宇宙膨張を加速させている謎のエネルギーとして、ダークエネルギーが提案されている。ダークエネルギーは方程式上では宇宙項である。https://ja.wikipedia.org/wiki/%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3%E6%96%B9%E7%A8%8B%E5%BC%8F


\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}


\numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 275: The division by zero $z/0=0$ and special relative theory of Einstein
}

\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\

\date{January 11, 2016}

\maketitle
{\bf Abstract: } In this announcement, for its importance, we will state a fundamental result for special relative theory of Einstein from the division by zero $z/0=0$. 

\bigskip
{\bf Introduction}

\bigskip

%\label{sect1}
By {\bf a natural extension of the fractions}
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, the division by zero
\begin{equation}
\frac{b}{0}=0, 
\end{equation}
is clear and trivial. See (\cite{msy}) for the recent results. See also the survey style announcements 179,185,237,246,247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252}). The division by zero is not only mathematical problems, but also it will give great impacts to human beings and the idea on the universe. The Institute of Reproducing Kernels is presenting various opinions in Announcements (many in Japanese) on the universe.

In this Announcement, for its importance, we will state a fundamental result for special relative theory of Einstein from the division by zero $z/0=0$. The contents were stated by Hiroshi Michiwaki in his memo dated on October 10, 2014 and we should state the results, more early.

\section{Special relative theory of Einstein}

Einstein's discovery of the equivalence of matter/mass and energy \cite{ein} in the year 1905 lies
at the core of today's modern physics. According to Albert Einstein \cite{einstein}, the rest-mass $m_0$, a
measure of the inertia of a (quantum mechanical) object is related to the relativistic mass $m_R$
by the equation, with relative velocity $v$ and the speed $c$ of light in vacuum,
\begin{equation}
m_0 = m_R \sqrt{1 - \frac{v^2}{c^2}}.
\end{equation}
Therefore, we obtain, immediately
\begin{equation}
m_R^2= m_0^2 \left(1 - \frac{v^2}{c^2}\right)^{-1}.
\end{equation}
Therefore, by the division by zero, we have the surprising result for $ v = c$:
\begin{equation}
m_R = 0.
\end{equation} It seems that the modern physical common sense is then $
m_R = + \infty$.

\bigskip

\section{ A conjecture by H. Michiwaki}
As his simple result (1.3) from the division by zero, Michiwaki stated his conjecture or interpretation for neutrino; neutrino are able to have small mass, because they are moved with near $c$ or $c$ velocity.
Indeed, we assume that $m_0$ is the mass of neutrino at the stopped case. As the experiment, we know that the velocity of neutrino is near to $c$ or $c$. So he thought
that neutrino will have small mass.

This result was realized positively by Takaaki Kajita by experiment and he got Novel Prize in 2015.

Furthermore, he referred to the very interesting interpretations of {\it photon of energy} and {\it Doppler effect} from the viewpoint of the division by zero in his memo.

\section{Acknowledgements}

This announcement was, of course, inspired by the paper \cite{bb} and for the very interesting relation with computer sciences and the division by zero, see \cite{bht}.

\bigskip

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{bb}
Barukcic J. P., and I. Barukcic, Anti Aristotle - The Division Of Zero By Zero,
ViXra.org (Friday, June 5, 2015)
© Ilija Barukčić, Jever, Germany. All rights reserved. Friday, June 5, 2015 20:44:59.

\bibitem{bht}
Bergstra, J. A., Hirshfeld Y., and Tucker, J. V.,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

\bibitem{cs}
Castro, L. P., and Saitoh, S. (2013).
Fractional functions and their representations. {\it Complex Anal. Oper. Theory {\bf7}, no. 4, }1049-1063. 

\bibitem{ein}
Einstein, A. (1905) Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik, vol. 323, Issue 13, pp. 639-641,

\bibitem{einstein}
Einstein, A. (1905).
Zur Elektrodynamik bewegter Körper, Annalen der Physik, vol. 322, Issue 10, pp. 891-921.

\bibitem{kmsy}
Kuroda, M., Michiwaki, H., Saitoh, S., and Yamane, M. (2014).
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
{\it Int. J. Appl. Math. Vol. 27, No 2 }, 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
Michiwaki H., Saitoh S., and Yamada M. (2015).
Reality of the division by zero $z/0=0$. IJAPM (International J. of Applied Physics and Math. (to appear).

\bibitem{mst}
Michiwaki, H., Saitoh, S., and Takagi, M.
A new concept for the point at infinity and the division by zero z/0=0 
(manuscript).

\bibitem{s}
Saitoh, S. (2014).
Generalized inversions of Hadamard and tensor products for matrices,
{\it Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 , 87-95.} http://www.scirp.org/journal/ALAMT/ 

\bibitem{taka}
Takahasi, S.-E. (2014).
{On the identities $100/0=0$ and $ 0/0=0$.}
(note)

\bibitem{ttk}
Takahasi, S.-E., Tsukada, M., and Kobayashi, Y. (2015).
{\it Classification of continuous fractional binary operations on the real and complex fields. } Tokyo Journal of Mathematics {\bf 8}, no.2(in press).

\bibitem{ann179}
Division by zero is clear as z/0=0 and it is fundamental in mathematics. {\it Announcement 179 (2014.8.30).}

\bibitem{ann185}
The importance of the division by zero $z/0=0$. {\it Announcement 185 (2014.10.22)}.

\bibitem{ann237}
A reality of the division by zero $z/0=0$ by geometrical optics. {\it Announcement 237 (2015.6.18)}.

\bibitem{ann246}
An interpretation of the division by zero $1/0=0$ by the gradients of lines. {\it Announcement 246 (2015.9.17)}.

\bibitem{ann247}
The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$. {\it Announcement 247 (2015.9.22)}.

\bibitem{ann250}
What are numbers? - the Yamada field containing the division by zero $z/0=0$. {\it Announcement 250 (2015.10.20)}.

\bibitem{ann252}
Circles and curvature - an interpretation by Mr. Hiroshi Michiwaki of the division by
zero $r/0 = 0$. {\it Announcement 252 (2015.11.1)}.

\end{thebibliography}



\end{document}


再生核研究所声明200(2015.1.16) ゼロ除算と複素解析の現状 ―佐藤超関数論との関係が鍵か?

正確に次のように公開して複素解析とゼロ除算の研究を開始した:
特異点解明の歩み100/0=0,0/0=0 関係者:
複素解析学では、1/0として、無限遠点が存在して、美しい世界です。しかしながら、1/0=0 は 動かせない真実です。それで、勇気をもって進まざるを得ない:― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.
私には 無理かと思いますが、世の秀才の方々に 挑戦して頂きたい。空論に付き合うのはまっぴらだ と考える方も多いかと思いますが、面白いと考えられる方で、楽しく交流できれば幸いです。宜しくお願い致します。 添付 物語を続けたい。敬具 齋藤三郎
2014.4.1.11:10

上記で、予想された難問、 解析関数は、孤立特異点で確定値をとる、が 自分でも予想しない形で解決でき、ある種の実体を捉えていると考えたのであるが、この結果自体、世のすべての教科書の内容を変える事件であるばかりではなく、確立されている無限遠点の概念に 新しい解釈を与えるもので、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6月、帰国後、気に成っていた、金子晃先生の 30年以上前に購入した超函数入門の本に 極めて面白い記述があり、佐藤超関数とゼロ除算の面白い関係が出てきた。さらに 特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられているが、面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていることが分かった。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
現在まで、添付21ページの論文原稿について 慎重に総合的に検討してきた。
そこで、問題の核心、ゼロ除算の発展の基礎は、次の論点に有るように感じられてきた:
We can find many applicable examples, for example, as a typical example in A. Kaneko (\cite{kaneko}, page 11) in the theory of hyperfunction theory: for non-integers $\lambda$, we have
\begin{equation}
x_+^{\lambda} = \left[ \frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}\right] =\frac{1}{2i \sin \pi \lambda}\{(-x + i0)^{\lambda}- (-x - i0)^{\lambda}\}
\end{equation}
where the left hand side is a Sato hyperfunction and the middle term is the representative analytic function whose meaning is given by the last term. For an integer $n$, Kaneko derived that
\begin{equation}
x_+^{n} = \left[- \frac{z^n}{2\pi i} \log (-z) \right],
\end{equation}
where $\log$ is a principal value: $ \{ - \pi < \arg z < +\pi \}$. Kaneko stated there that by taking a finite part of the Laurent expansion, the formula is derived. 
Indeed, we have the expansion, for around $ n$, integer
$$
\frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}
$$
\begin{equation}
= \frac{- z^n}{2\pi i} \frac{1}{\lambda -n} - \frac{z^n}{2\pi i} \log (-z )
- \left( \frac{\log^2 (-z) z^n}{2\pi i\cdot 2!} + \frac{\pi z^n}{2i\cdot 3!}
\right)(\lambda - n) + ... 
\end{equation}
(\cite{kaneko}, page 220).
By our Theorem 2, however, we can derive this result (4.3) from the Laurant expansion (4.4), immediately.
上記ローラン展開で、\lambda に n を代入したのが ちょうど n に対する佐藤の超関数になっている。それは、ゼロ除算に言う、 孤立特異点における解析関数の極における確定値である。これはゼロ除算そのものと殆ど等価であるから、ローラン展開に \lambda = n を代入した意味を、上記の佐藤超関数の理論は述べているので 上記の結果を分析すれば、ゼロ除算のある本質を捉えることができるのではないかと考えられる。
佐藤超関数は 日本で生まれた、基本的な数学で 優秀な人材を有している。また、それだけ高級、高度化しているが、このような初歩的、基本的な問題に関係がある事が明らかになってきた。そこで、佐藤超関数論の専門家の方々の研究参加が望まれ、期待される。また、関係者の助言やご意見をお願いしたい。
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として示していることである。
以 上

ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269

もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。


7歳の少女が、当たり前であると言っているゼロ除算を 多くの大学教授が、信じられない結果と言っているのは、まことに奇妙な事件と言えるのではないでしょうか。


世界中で、ゼロ除算は 不可能 か 
可能とすれば ∞  だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。

1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)

原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・

無限遠点は存在するが、無限大という数は存在しない・・・・

地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか????

1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/
割り算のできる人には、どんなことも難しくない

世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。

ベーダ・ヴェネラビリス

数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年


数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_

multiplication・・・・・増える 掛け算(×) 1より小さい数を掛けたら小さくなる。 大きくなるとは限らない。

0×0=0・・・・・・・・・だから0で割れないと考えた。

ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_

ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 
1+1=2が当たり前のように


『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、

1÷0=0 
1÷0=∞・・・・数ではない 
1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。

アラビア数字の伝来と洋算 - tcp-ip

http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf
明治5年(1872)

ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997

Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。

ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。

∞÷0はいくつですか・・・・・・・

∞とはなんですか・・・・・・・・

分からないものは考えられません・・・・・

再生核研究所声明199(2015.1.15) 世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0

ゼロ除算は 西暦628年インドでゼロが文献に記録されて以来、問題とされてきた。ゼロ除算とは、ゼロで割ることを考えることである。これは数学の基本である、四則演算、加法、減法、乗法、除法において、除法以外は何時でも自由にできるのに、除法の場合だけ、ゼロで割ることができないという理由で、さらに物理法則を表す多くの公式にゼロ除算が自然に現れていることもあって、世界各地で、今でも絶えず、問題にされていると考えられる。― 小学生でも どうしてゼロで割れないのかと毎年、いろいろな教室で問われ続いているのではないだろうか.

これについては、近代数学が確立された以後でも、何百年を越えて 永い間の定説として、ゼロ除算は 不可能であり、ゼロで割ってはいけないことは、初等教育から、中等、高校、大学そして学術界、すなわち、世界の全ての文献と理解はそうなっている。変えることのできない不変的な法則のように理解されていると考えられる。

しかるに2014年2月2日 ゼロ除算は、可能であり、ゼロで割ればゼロであることが、偶然発見された。その後の経過、背景や意味付け等を纏めてきた:

再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)― 
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について

ところが、気づいてみると、ゼロ除算は当たり前なのに、数学者たちが勝手に、割り算は掛け算の逆と思い込み、ゼロ除算は不可能であると 絶対的な真理であるかのように 烙印を押して、世界の人々も盲信してきた。それで、物理学者が そのために基本的な公式における曖昧さに困ってきた事情は ニュートンの万有引力の法則にさえ見られる。
さらに、誠に奇妙なことには、除算はその言葉が表すように、掛算とは無関係に考えられ、日本ばかりではなく西欧でも中世から除算は引き算の繰り返しで計算されてきた、古い、永い伝統がある。その考え方から、ゼロ除算は自明であると道脇裕氏と道脇愛羽さん6歳が(四則演算を学習して間もないときに)理解を示した ― ゼロ除算は除算の固有の意味から自明であり、ゼロで割ればゼロであるは数学的な真実であると言える(声明194)。数学、物理、文化への影響も甚大であると考えられる。
数学者は 数学の自由な精神で 好きなことで、考えられることは何でも考え、不可能を可能にし、分からないことを究め、真智を求めるのが 数学者の精神である。非ユークリッド幾何学の出現で 絶対は変わり得ることを学び、いろいろな考え方があることを学んできたはずである。そのような観点から ゼロ除算の解明の遅れは 奇妙な歴史的な事件である と言えるのではないだろうか。
これは、数学を超えた、真実であり、ゼロ除算は不可能であるとの 世の理解は間違っている と言える。そこで、真実を世界に広めて、人類の歴史を進化させるべきであると考える。特に声明176と声明185を参照。ゼロ除算は 堪らなく楽しい 新世界 を拓いていると考える。
以 上

1+0=1 1ー0=0 1×0=0  では、1/0・・・・・・・・・幾つでしょうか。
0???  本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・

1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)

ゼロ除算は、不可能であると誰が最初に言ったのでしょうか・・・・

7歳の少女が、当たり前であると言っているゼロ除算を 多くの大学教授が、信じられない結果と言っているのは、まことに奇妙な事件と言えるのではないでしょうか。

割り算を掛け算の逆だと定義した人は、誰でしょう???

世界中で、ゼロ除算は 不可能 か 
可能とすれば ∞  だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。

小学校以上で、最も知られている数学の結果は何でしょうか・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
https://www.pinterest.com/pin/234468724326618408/

原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・


無限遠点は存在するが、無限大という数は存在しない・・・・

加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849/a37209195?sort=1&fr=chie_my_notice_canso

0×0=0・・・・・・・・・だから0で割れないと考えた。

アラビア数字の伝来と洋算 - tcp-ip

http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf
明治5年(1872)
割り算のできる人には、どんなことも難しくない

世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。

ベーダ・ヴェネラビリス

数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年

地球平面説→地球球体説
天動説→地動説
1/0=∞ 若しくは未定義 →1/0=0
地球人はどうして、ゼロ除算1300年以上もできなかったのか?  2015.7.24.9:10 意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。 生態系では、人類が がん細胞であった とならないとも 限らないのでは?

ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように

Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/


ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_

地球平面説→地球球体説
地球が丸いと考えた最初の人-ピタゴラス
地球を球形であることを事実によって証明しようとした人-マゼラン
地球を球形と仮定して初めて地球の大きさを測定した人-エラトステネス
天動説→地動説 アリスタルコス=ずっとアリストテレスやプトレマイオスの説が支配的だったが、約2,000年後にコペルニクスが再び太陽中心説(地動説)を唱え、発展することとなった。https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AA%E3%82%B9%E3%82%BF%E3%83%AB%E3%82%B3%E3%82%B9 …
何年かかったでしょうか????

1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????


地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか???


1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか???

ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997


ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。

∞÷0はいくつですか・・・・・・・

∞とはなんですか・・・・・・・・

分からないものは考えられません・・・・・









0 件のコメント:

コメントを投稿