第40話
パラダイムシフト誕生:産みの苦しみ
ガリレオ;地動説;天動説;ピサの斜塔;裁判
前回述べたように、「天動説 vs, 地動説」は、実験で白黒つけることができない形而上学的問題で、すなわち、
(A): 「天動説 vs. 地動説」は哲学論争であって、 「真偽の問題」ではない
である。
ケプラーの法則や、惑星の逆行や年周視差を観測できても、座標系の取り方の違いといえば、教会サイドは悪くても水掛け論にできる。
アリストテレス世界観は1500年間その地位を保った実績があるわけで、
そんなに悪い世界観というわけではない
しかし、技術革新(特に、望遠鏡、航海術)によって得られた測定データを整理・整頓するのには、 アリストテレス世界観の中では少し不自由だった。
この「不自由の歴史」が、
[コペルニクス]⇒[ケプラー]⇒[ガリレオ]
だったのだと思う。しかし、これだけで、「天動説から地動説へ」が確定したわけではなかった。 当時のキリスト教会側にだって、優秀な人材がいたわけで、
「運動は相対的」とか「座標の原点の取り方の違い」
と言われれば、結局「水掛け論」になるしかなかったからである。当時、「座標」という言葉がなかったかもしれないが(デカルトの「方法序説(1637年)」の中で、導入された)、実質的な意味では、これが「教会側の言い分」だったと思う。
ガリレオ伝説
ガリレオは、「アリストテレス世界観の打倒」の急先鋒で、次の二つ「①と②」を標的にした。
①:プトレマイオスの「天動説」
②:アリストテレスの「重いものは速く落ちる」
科学史はエピソードが豊富な分野ではないが、このキリスト公認の二つの「①と②」に関しては、「ガリレオ伝説」が有名である。 プトレマイオスとアリストテレスは天国で「キリスト教に権威づけられて困ったことになった」と思っていたに違いない。しかし、この「教会公認」のお蔭でガリレオは「スター」になることができた。
①に対しては、
「それでも、地球は回っている」
②に対しては、
「ピサの斜塔」
である。 ガリレイは、
(B): 落下の法則
運動関数表示で(重力定数g=9.8として)、
[落下距離]=(g/2) × [落下時間] 2
すなわち、
x=f(t)=(g/2) × t 2
を示すために、『ピサの斜塔』から大小二つの鉛の玉を同時に落とし「大小両方の玉が同時に地面に落下することを確認」したとされている。
出来すぎた話で(斜塔でなくても普通のビルの屋上から落としても良かった)、作り話だという意見もあるが、後世の人々が「ガリレオを主人公とする物語」を信じたくなるような魅力・スター性がガリレオにはあったのだと思う。
もちろん、
教会側にも「言い分」があった
鉛の玉と鳥の羽毛を落下させれば、ガリレオのピサの斜塔伝説とは異なった結果になったはずで、「真空」の概念が明確でなかった当時ならば、教会側も十分反論できたはずだからである。
さらに言うならば、教会サイドは、「ガリレオの落下の法則」は認めても良かった。 アリストテレスは非常に多くの発言したのだから、幾つか勘違いがあってもおかしくはない。また、「重い方が速く落ちる」とは聖書には書いてないのだから、キリストを貶めることにはならない。
したがって、
ガリレオの裁判(異端審問所審査:1633年)の時点で、
教会サイドはすべてを水掛け論にして、頑張り切れた
と思う。 「水掛け論」にしてしまえば、教会の勝ちになる。
教会だって、馬鹿じゃない。
まさか、ニュートンが現れるとは、思わなかった
だけなのです。 こんなこと誰も(ガリレオだって)予想しなかったはずです。
結局、ガリレオは「アリストテレス世界観の打倒の急先鋒」であったとしても、「アリストテレス世界観に代わる新しい世界観を提示できなかったわけで、この意味では、
ガリレオ伝説はニュートン登場の前座に過ぎない
そうならば、
すべてに決着をつけるためには、
次のパラダイムシフト(世界観の転回)しかないだろう。
(C): ニュートン力学的世界観
◎
アリストテレス的
世界観(目的因)
→
ニュートン的
世界観(因果関係)
すなわち、ニュートン力学で、
ニュートンの運動方程式 + 万有引力の法則
http://chanelkant.blog.fc2.com/blog-entry-28.html
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明148で 結構詳しい状況について説明し、特異点解明:100/0 =0,0/0=0 として 詳しい状況はブログなどでも公開、関係文書は保管されている。2月2日考えを抱いた日としているので、まだ、3か月足らずである。
簡潔に回想して、問題点と今後について、考察し、今後を構想したい。
まず、あまりにも基本的な問題で、全く予期しない それこそ驚嘆すべき結果なので、茫然としてこれは何だと、あたかも憑かれたかのように夢中で取り組み、相当な研究者、共同研究者と交流し、相当なメールと印刷部が溜まっている。経過、成果などきちんとしておくべきと考えて、2か月で、2つの論文の出版を確定させて、ちょうど良いタイミングもあって、一つは4月早々に既に出版されている。
まず結果は、分数を拡張して、自然に100割るゼロを考えると、何でもゼロで割れば、ゼロで、面白いのは、どの様に考えを一般化しても、それに限ると言うことが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明されたと言う事実である。 出版された論文は、高校生にも十分理解できる内容である。具体的な結果は、
関数 y = 1/x のグラフは、原点で ゼロである
と宣言している。すなわち、 1/0=0 である。
グラフを想像して、そんな馬鹿な、信じられない、そのようなことは考えるべきではないとは、結構な数学者の真面目な意見であった。 そこで、
その実態を追及して、ムーア・ペンローズ一般逆の考えがあることを認識して、いわば奇妙な、変な逆として、分数を拡張しているが、永年研究してきた チコノフ正則化法の神秘力 によってそれらは 数の実体である と認識した。
との信念を持って研究を進め、共同研究者には、割り算の意味から、当たり前だとか、計算機は(:アルゴリズムは)そのように解釈する、物理的な楽しい説明さえ現れて、実数の場合には 論文も出版されたこともあり、既に当たり前で 今後 物理的な応用などに関心が移っている。― 要点は、上記双曲線は、原点で猛烈な非連続性を有し、爆発や衝突、駒で言えば、 中心の特異性などの現象を記述していることが分った。
上記2件の論文出版の確定をみて、4月1日:
複素解析学では、1/0として、無限遠点が存在して、美しい世界です。しかしながら、1/0=0 は 動かせない真実です。それで、勇気をもって進まざるを得ない:― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.
私には 無理かと思いますが、世の秀才の方々に 挑戦して頂きたい。空論に付き合うのはまっぴらだ と考える方も多いかと思いますが、面白いと考えられる方で、楽しく交流できれば幸いです。
として、公表して 複素解析に取り掛かった。
上記で、予想された難問、 解析関数は、孤立特異点で確定値をとる、が 自分でも予想しない形で解決でき、ある種の実体を捉えていると考えたのであるが、この結果自体、世のすべての教科書の内容を変える事件であるばかりではなく、確立されている無限遠点の概念に 新しい解釈を与えるもので、容易に進められる状況ではない。
念をおしたいのは、 ゼロで割る新しい結果は、従来の数学に 何ら矛盾するものでは、なく、従来ゼロで割るときに避けてきたところに、ある種の新しい結果が得られるということである (複素解析学では、無限遠点が有るので、少し意味あいが変わる)。 すなわち、 従来の数学に、新しい数学が加わると言うことである。その新しい数学が、実が有って、物理的な意味や、従来の数学に好ましい影響を与えるかは、多くは、今後の問題である。ある変な島を発見した。つまらなそうだから、関心ないは 当然有り得る態度である。
そこで、今後の姿勢は、世界観の問題に大きく影響されるのではないだろうか。ゼロで割ればゼロになり、割り算を自然に拡張すれば、それに限るという、何か裏に大きな、凄い世界が有るのではないだろうか、と構想している。― 1/0 は 無限大、無限遠点である、それは良く分る、しかしながら、無限大、無限遠点は 数ではないではないか、矛盾ではないか? 他方、数学は 1/0=0と一意に定めている、何か有るのではないだろうか? どうして、南極と北極がくっ付いているのか? どうして、原点と無限遠点がくっ付いているのか? 神の 人類に対する意地悪、隠しごと? 人類の知能検査か?
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory.(in press).
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
(本当に面白い、中国茶。研究室に来る途中、 ちょうど、2014.5.5.8:00です。考えがひとりでにわきました。知りたい神の意志です。例の数学ですね。 どうして、無限遠点とゼロ点が 一致しているかです。作文が出来そうです。)
ゼロで割ることの一般化について、発見して3か月目に
100/0=0,0/0=0 誕生日(2014.2.2) 3か月:
足し算、引き算、掛け算は 何時もできる。 割り算はゼロで割ることが出来なかった。ゼロで割ればゼロになる、良い、自然な解釈を発見して、ちょうど3か月になる。ゼロで割る数学は 爆発、衝突などの特異現象を記述しているが、複素解析学では、従来の、無限遠点に対して、ゼロを対応させるべきとして、とんでもない現象を示している。
と記述し、詳しい経過
再生核研究所声明148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
や その後の経過、内容についても纏めている:
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
5日朝 ひとりでにわいた、新鮮な想いをできるだけ多くの人に、その奇妙な現象を表現して、世界の理解を深めたい。― 神も 世界も かすかにしか、感じられない - しかしながら ― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
述語やグラフに馴染みの薄い方は、下記注でインターネットなどで確認、 補充して下さい。要するに、 直角双曲線y=1/xのグラフも 立体射影における北極(無限遠点) も ゼロで割る考えの自然な一般化は 原点でゼロ、1/0=0, z/0=0 と 数学はなっている。十分な一般化でも、それ以外には考えられないとなっている。ところが、1変数複素解析学を実現させる立体射影では、複素数の世界では、1/0は 無限遠点として、球の北極を考えるのが世界の常識で、複素解析学の教科書、学術書は全て、現在そうなっている。そこで、発見された新しい概念に基づいて、そこに問題を提起し、無限遠点、無限は数ではないのではないか、おかしいのではないか と述べている。 他方、1/0=0 は割り算の概念を越えて、関数y=1/xとW=1/zが それぞれ、実数全体や複素数全体を 1対1に ちょうど対応させるなど 極めて自然な性質を有する。
しかしながら、ここで、極めて、面白い現象が起きている。 双曲線でも、球でも、原点の近くで、無限の彼方にとんでいるのに、原点で、突然ゼロに戻っているという、驚嘆すべき現象である。この驚嘆すべき不連続性のために、ゼロで割る新しい考えは受け入れられないと 人は思うだろうか?
逆に、その特異性こそ、ゼロで割ることの本質、要点であり、神の意志、思わせぶりが出ていると考えるべきか?
ビッグバン現象、接触現象、生と死の一致、永劫回帰の思想、ユニバースは 一体どうなっているのか (神の意志) と、そのからくり、 どうなっているのか しきりに 切に 知りたい。
天動説が地動説に変わったように、何時か、この強烈な不連続性を、ユニバースの常識と捉える時代が来るだろうか。それとも 神の気まぐれに 終わるだろうか。
注:
1. 直角双曲線
www.sist.ac.jp/.../chokkaku_sokyokusen.html
Traduzir esta página
反比例の関係を表すxy=k(k≠0)のような関係をx軸y軸平面に描くと、図のような直角双曲線となる。 kの値によって違う線となるが、いずれもx=0(y軸)とy=0(x軸)に限り ...
ステレオ投影:ウィキペディアより
http://ja.wikipedia.org/wiki/%E3%82%B9%E3%83%86%E3%83%AC%E3%82%AA%E6%8A%95%E5%BD%B1
数学的な定義
単位球の北極から z = 0 の平面への立体射影を表した断面図。P の像がP ' である。
冒頭のように、数学ではステレオ投影の事を写像として立体射影と呼ぶので、この節では立体射影と呼ぶ。 この節では、単位球を北極から赤道を通る平面に投影する場合を扱う。その他の場合はあとの節で扱う。
3次元空間 R3 内の単位球面は、x2 + y2 + z2 = 1 と表すことができる。ここで、点 N = (0, 0, 1) を"北極"とし、M は球面の残りの部分とする。平面 z = 0 は球の中心を通る。"赤道"はこの平面と、この球面の交線である。
M 上のあらゆる点 P に対して、N と P を通る唯一の直線が存在し、その直線が平面z = 0 に一点 P ' で交わる。Pの立体射影による像は、その平面上のその点P ' であると定義する。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory.(in press).
再生核研究所声明255 (2015.11.3) 神は、平均値として関数値を認識する
(2015.10.30.07:40
朝食後 散歩中突然考えが閃いて、懸案の問題が解決した:
どうして、ゼロ除算では、ローラン展開の正則部の値が 極の値になるのか?
そして、一般に関数値とは何か 想いを巡らしていた。
解決は、驚く程 自分の愚かさを示していると呆れる。 解は 神は、平均値として関数値を認識すると纏められる。実際、解析関数の場合、上記孤立特異点での関数値は、正則の時と全く同じく コ-シーの積分表示で表されている。 解析関数ではコ-シーの積分表示で定義すれば、それは平均値になっており、この意味で考えれば、解析関数は孤立特異点でも 関数値は 拡張されることになる ― 原稿には書いてあるが、認識していなかった。
連続関数などでも関数値の定義は そのまま成り立つ。平均値が定義されない場合には、いろいろな意味での平均値を考えれば良いとなる。解析関数の場合の微分値も同じように重み付き平均値の意味で、統一的に定義でき、拡張される。 いわゆるくりこみ理論で無限値(部)を避けて有限値を捉える操作は、この一般的な原理で捉えられるのではないだろうか。2015.10.30.08:25)
上記のようにメモを取ったのであるが、基本的な概念、関数値とは何かと問うたのである。関数値とは、関数の値のことで、数に数を対応させるとき、その対応を与えるのが関数でよく f 等で表され x 座標の点 x をy 座標の点 yに対応させるのが関数 y = f(x) で、放物線を表す2次関数 y=x^2, 直角双曲線を表す分数関数 y=1/x 等が典型的な例である。ここでは 関数の値 f(x) とは何かと問うたものである。結論を端的に表現するために、関数y=1/xの原点x=0における値を問題にしよう。 このグラフを思い出して、多くの人は困惑するだろう。なぜならば、x が正の方からゼロに近づけば 正の無限に発散し、xが負の方からゼロに近づけば負の無限大に発散するからである。最近発見されたゼロ除算、ゼロで割ることは、その関数値をゼロと解釈すれば良いという簡単なことを言っていて、ゼロ除算はそれを定義とすれば、ゼロ除算は 現代数学の中で未知の世界を拓くと述べてきた。しかし、これは誰でも直感するように、値ゼロは、 原点の周りの値の平均値であることを知り、この定義は自然なものであると 発見初期から認識されてきた。ところが、他方、極めて具体的な解析関数 W = e^{1/z} = 1 + 1/z + 1/2!z^2 + 1/3!z^3 +……. の点 z=0 における値がゼロ除算の結果1であるという結果に接して、人は驚嘆したものと考えられる。複素解析学では、無限位数の極、無限遠点の値を取ると考えられてきたからである。しかしながら、上記の考え、平均値で考えれば、値1をとることが 明確に分かる。実際、原点のコーシー積分表示をこの関数に適用すれば、値1が出てくることが簡単に分かる。そもそも、コーシー積分表示とは 関数の積分路上(簡単に点の周りの円周上での、 小さな円の取り方によらずに定まる)で平均値を取っていることに気づけば良い。
そこで、一般に関数値とは、考えている点の周りの平均値で定義するという原理を考える。
解析関数では 平均値が上手く定義できるから、孤立特異点で、逆に平均値で定義して、関数を拡張できる。しかし、解析的に延長されているとは言えないことに注意して置きたい。 連続関数などは 平均値が定義できるので、関数値の概念は 今までの関数値と同じ意味を有する。関数族では 平均値が上手く定義できない場合もあるが、そのような場合には、平均値のいろいろな考え方によって、関数値の意味が異なると考えよう。この先に、各論の問題が派生する。
以 上
再生核研究所声明 272(2016.01.05): ゼロ除算の研究の推進を
ゼロ除算1/0=0は、西暦628年インドでゼロが記録され、既に問題とされ、それ以来の発見で、未知の新しい数学、新世界である。すなわち、ゼロで割ることは 不可能であるがゆえに 考えてはいけないとされてきたが、ゼロで割ることができるとなったのであるから、未知の世界を探検できる。既に数学的には確立され、物理的、幾何学的にも実証されている。最近、素人にも分かるような面白い例が結構沢山発見されてきたので、広く そのような面白い新しい現象の発見を呼びかけている。結果は、分数を拡張して (ゼロ除算は普通の意味での割り算ではなく、ある意味での割り算である)、何でも0で割るとゼロで、面白いのは、どの様に考えを一般化しても、それに限ることが証明されたことである。導入、動機、一意性、すなわち、それ以外の考えが無いこと、それらが、高校レベルの数学で、簡単に証明された。出版された論文は、高校生にも理解できる内容である。具体的な結果は、関数y = 1/x のグラフは、原点で ゼロであると述べている。すなわち、 1/0=0 である。それらは 既に 数の実体である と言える。
― 要点は、上記直角双曲線は、原点で猛烈な不連続性を有し、爆発や衝突、コマで言えば、中心の特異性などの現象を記述している。複素解析学では、1/0として、無限遠点が存在して、美しい世界であるが、無限遠点は 数値としては ゼロが対応する。現在までに発見されたゼロ除算の実現例を簡単に列挙する:
万有引力の法則で、2つの質点が一致すれば、引力はゼロである;一定の角速度で回転している回転体の中心で、角速度はゼロで、中心で不連続性を有している;光の輝度は光源でゼロであること:円の中心の鏡像は 無限遠点ではなくて、中心そのものであるという強力な不連続性;電柱の微小な左右の揺れから、真っ直ぐに立った電柱の勾配はゼロであり、左右からマイナス無限とプラス無限の傾きの一致として、傾きゼロが存在している; これは複素解析における極の概念を変える;代数的には ゼロ除算z/0=0を含む体の構造が明らかにされ、数体系として自然な体系である複素数体より ゼロ除算z/0=0を含むY体 の方が自然であること;点の曲率がゼロであること、などである。
さらに、原始的なテコの原理にもゼロ除算は明確に現れ、初等幾何学にもいろいろ現れ、例えば、半径Rの円をどんどん大きくすると、円の面積はいくらでも大きくなるが、半径が無限になると突然、その面積はゼロになることが認識された。Rが無限になると円は直線になり、円は壊れて半空間になるからである。このことの明確な意味が数学的に捉えられ、一般に図形が壊れる現象をゼロ除算は表していることが分かった。これらの現象は ゼロ除算が 普遍的に存在する現象を説明するもの と考えられる。
また、ゼロ除算において 無限遠点が 数値では ゼロで表されることは 驚嘆すべきことであり、それではuniverse は一体どうなっているのかと、真智への愛の 激しい情念が湧いてくるのではないだろうか。ゼロ除算は、数学ばかりではなく、物理学や世界観や文化にも大きな影響を与える:
再生核研究所声明166(2014.6.20): ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16): ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算の最も関与している研究は 第1に複素解析学への影響、複素解析学の研究である。実際、ゼロ除算は、ローラン展開そのものの見方から始まり、それは佐藤の超関数や特異積分などに関係している。
第2は、ゼロ除算の物理学への影響である。ニュートンの万有引力の法則など多くの物理法則の公式に、ゼロ除算が現れるので、それらに対する新しい結果の解釈、影響である。
第3は ゼロ除算の代数的な、あるいは作用素論的な研究である。これらも始まったばかりであり、出版が確定している論文:
S.-E. Takahasi, M. Tsukada and Y.Kobayashi, Classificationof continuous fractional binary operators on the realand complex fields, TokyoJournal of Mathematics {\bf 8}(2015), no.2 (in press).
がそれらの最先端である。
これらの分野では、誰でも先頭に立てる新しい研究分野であると言える。
新しい研究分野となると、若い人がやみくもに挑戦するのは危険だと考えるのは、理解できるが、ある程度自己の研究課題が確立していて、多少の余裕がみいだせる人は、新しい世界を自分の研究課題と比較しながら、ちょっと覗いてみるかは、面白いのではないだろうか。思わぬ関連が出てくるのが、数学の研究の楽しさである。アメリカ新大陸に初めて移った人たちの想い、ピッツバーグの地域に初めて移住した人たちの想いを想像してみたい。ゼロ除算は 新しい数学で専門家はいないから、多くの人が面白い現象を発見できる機会があると考えられる。次も参考:
再生核研究所声明189(2014.12.233): ゼロ除算の研究の勧め
再生核研究所声明222(2015.4.8): 日本の代表的な数学として ゼロ除算の研究の推進を求める
再生核研究所声明253(2015.10.28): 私も探そう ― ゼロ除算z/0=0 の現象
再生核研究所声明259 (2015.12.04): 数学の生態、旬の数学 ― ゼロ除算の勧め
再生核研究所声明262 (2015.12.09): 宇宙回帰説 ― ゼロ除算の拓いた世界観
ゼロ除算は下記のように述べられる世界史上の事件であると考えられる:
地球平面説→地球球体説
天動説→地動説
1/0=∞若しくは未定義 →1/0=0
そこで、ゼロ除算の研究の推進を 広く呼びかけたい。研究を推進させるために、研究への参加や、研究活動へのいろいろな協力や応援を求めたい。
以 上
0 件のコメント:
コメントを投稿