2016年1月22日金曜日

セントラルミズーリ大の数学者、 22,338,618桁の素数を発見・世界最長記録を更新

セントラルミズーリ大の数学者、 22,338,618桁の素数を発見・世界最長記録を更新

Posted 23 hours ago, by Chloe Williams
GIMPS(Great Internet Mersenne Prime Search)プロジェクトは、University of Central Missouriの数学者、Curtis Cooper(カーティス・クーパー)教授がクラスタースーパーコンピューターを駆使することで、22,338,618桁の素数を発見しこれまでの素数の桁数最長記録を更新したことを発表した。

22,338,618桁という数はこれまでの素数の世界最長記録よりも更に500万桁も長いこととなる。

クーパー教授は700台のPCを結合させたクラスタースーパーコンピューターを使用することで、2005年、2006年、そして2008年にも素数の世界記録を更新していた。

今回の22,338,618桁の素数を発見では、GIMPSプロジェクトに参加する別研究者が、NVidia Titan GPUと AMD Fury GPUを搭載した別のコンピューターを使って検証を行い、その検証結果を更に、別の研究者が18コアのサーバーを使って再検証を行うことで、クーパー教授が発見した数が本当に素数であることが確認された。

長い素数は、インターネット上の通信の暗号化など、様々な領域に使用されており、現代生活に欠かせないインターネットのセキュリティーを保障する上で欠かせないものとなる。ただし、現在、セキュリティーキーを長くし過ぎた場合、計算量が膨大となり実用的ではなくなるため、インターネットのセキュリティーキーとして使用されているRSAセキュリティーキーは、数100ビットのものが主流となっている。

Source: GIMPS


Chloe Williams is contributing writer of the Business Newsline. Send your comment to the author
http://www.businessnewsline.com/news/201601211232150000.html

再生核研究所声明255 (2015.11.3) 神は、平均値として関数値を認識する
(2015.10.30.07:40 
朝食後 散歩中突然考えが閃いて、懸案の問題が解決した:
どうして、ゼロ除算では、ローラン展開の正則部の値が 極の値になるのか?
そして、一般に関数値とは何か 想いを巡らしていた。
解決は、驚く程 自分の愚かさを示していると呆れる。 解は 神は、平均値として関数値を認識すると纏められる。実際、解析関数の場合、上記孤立特異点での関数値は、正則の時と全く同じく コ-シーの積分表示で表されている。 解析関数ではコ-シーの積分表示で定義すれば、それは平均値になっており、この意味で考えれば、解析関数は孤立特異点でも 関数値は 拡張されることになる ― 原稿には書いてあるが、認識していなかった。
 連続関数などでも関数値の定義は そのまま成り立つ。平均値が定義されない場合には、いろいろな意味での平均値を考えれば良いとなる。解析関数の場合の微分値も同じように重み付き平均値の意味で、統一的に定義でき、拡張される。 いわゆるくりこみ理論で無限値(部)を避けて有限値を捉える操作は、この一般的な原理で捉えられるのではないだろうか。2015.10.30.08:25)
上記のようにメモを取ったのであるが、基本的な概念、関数値とは何かと問うたのである。関数値とは、関数の値のことで、数に数を対応させるとき、その対応を与えるのが関数でよく f  等で表され x 座標の点 x  をy 座標の点 yに対応させるのが関数 y = f(x) で、放物線を表す2次関数 y=x^2, 直角双曲線を表す分数関数 y=1/x 等が典型的な例である。ここでは 関数の値 f(x) とは何かと問うたものである。結論を端的に表現するために、関数y=1/xの原点x=0における値を問題にしよう。 このグラフを思い出して、多くの人は困惑するだろう。なぜならば、x が正の方からゼロに近づけば 正の無限に発散し、xが負の方からゼロに近づけば負の無限大に発散するからである。最近発見されたゼロ除算、ゼロで割ることは、その関数値をゼロと解釈すれば良いという簡単なことを言っていて、ゼロ除算はそれを定義とすれば、ゼロ除算は 現代数学の中で未知の世界を拓くと述べてきた。しかし、これは誰でも直感するように、値ゼロは、 原点の周りの値の平均値であることを知り、この定義は自然なものであると 発見初期から認識されてきた。ところが、他方、極めて具体的な解析関数 W = e^{1/z} = 1 + 1/z + 1/2!z^2 + 1/3!z^3 +……. の点 z=0 における値がゼロ除算の結果1であるという結果に接して、人は驚嘆したものと考えられる。複素解析学では、無限位数の極、無限遠点の値を取ると考えられてきたからである。しかしながら、上記の考え、平均値で考えれば、値1をとることが 明確に分かる。実際、原点のコーシー積分表示をこの関数に適用すれば、値1が出てくることが簡単に分かる。そもそも、コーシー積分表示とは 関数の積分路上(簡単に点の周りの円周上での、 小さな円の取り方によらずに定まる)で平均値を取っていることに気づけば良い。
そこで、一般に関数値とは、考えている点の周りの平均値で定義するという原理を考える。
解析関数では 平均値が上手く定義できるから、孤立特異点で、逆に平均値で定義して、関数を拡張できる。しかし、解析的に延長されているとは言えないことに注意して置きたい。 連続関数などは 平均値が定義できるので、関数値の概念は 今までの関数値と同じ意味を有する。関数族では 平均値が上手く定義できない場合もあるが、そのような場合には、平均値のいろいろな考え方によって、関数値の意味が異なると考えよう。この先に、各論の問題が派生する。

以 上



再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について

ゼロ除算 100/0=0 は 説明も不要で、記号を含めて 数学的に既に確定していると考える。 もちろん、そこでは100/0 の意味をきちんと捉え、確定させる必要がある。 100/0 は 割り算の自然な拡張として ある意味で定義されたが、 その正確な意味は微妙であり、いろいろな性質を調べることによって その意味を追求して行くことになる:

ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
100/0=0 というのであるから、それは 100= 0 x0 というような意味を有するであろうかと 問うことは可能である。 もちろん、x を普通の掛け算とすると0x0 =0 となり、矛盾である。ところが山根正巳氏によって発見された解釈、物理的な解釈は絶妙に楽しく、深い喜びの情念を与えるのではないだろうか:

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

等速で一直線上 異なる方向から、同じ一定の速さvで、同じ質量mの物体が近づいているとする。 その時、2つの物体の運動エネルギーの積は

\begin{equation}
\frac{1}{2}m{ v}^2 \times \frac{1}{2}m{(- v)^2} =E^2.
\end{equation}
で 一定E^2である。
ところが2つの物体が衝突して止まれば、vは ともにゼロになり、衝突の後では見かけ上
\begin{equation}
0 \times 0 =E^2.
\end{equation}
となるのではないだろうか。 その時はE^2 は 熱エネルギーなどに変わって、エネルギー保存の法則は成り立つが、ある意味での掛け算が、ゼロ掛けるゼロになっている現象を表していると考えられる。 ゼロ除算はこのような変化、不連続性を捉える数学になっているのではないだろうか。 意味深長な現象を記述していると考える。
運動エネルギー、物質は数式上から消えて、別のものに変化した。 逆に考えると、形式上ないものが変化して、物とエネルギーが現れる。これはビッグバンの現象を裏付けているように感じられる。 無から有が出てきたのではなくて、何かの大きな変化をビッグバンは示しているのではないだろうか?
以 上

再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について

ゼロで割る、ゼロ除算は 割り算が掛け算の逆と考えれば、不可能である事が簡単に証明されてしまう。しかるにゼロ除算はある自然な考え方でゼロになるということが発見されるや否や、ゼロ除算は除算の固有の意味から自明であるということと その一意性があっという間に証明されてしまった。ここでは創造性の実態、不思議な面に触れて、創造性の奇妙な観点をしっかり捉えて置きたい。― 背景の解説は 次を参照:

ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
道脇裕・愛羽 父・娘 氏たちの自明であるという解釈は 再生核研究所声明194で纏めたので、ここでは高橋の一意性定理を確認して置きたい。

まず、山形大学の高橋眞映 名誉教授によって与えられた 定理とその完全な証明を述べよう:

定理 Rを実数全体として、 Fを R x R からRへの写像(2変数関数)で、全ての実数 a、b、c、d に対して

F (a, b)F (c, d)= F (ac, bd)

および b がゼロでない限り、

F (a, b) = a/b

とする。 このとき、 F (a, 0) = 0 が導かれる。

証明 実際、 F (a, 0) = F (a, 0)1 = F (a, 0)(2/2) = F (a, 0)F (2, 2) = F (ax 2, 0 x 2) = F (2a, 0) = F (2, 1)F (a, 0) = 2F (a, 0).。 よって F (a, 0) = 2F (a, 0)、ゆえに F (a, 0)=0。

この定理で、F (a, 0) を a/0 と定義するのは自然であり、実際、 そう定義する。 ここは大事な論点で、チコノフ正則化法や道脇方式で既にa/0が定義されていれば、もちろん、定理ではF (a, 0) =a/0 が導かれたとなる。

定理は 分数の積の性質 (a/b)(c/d) = (ac/bd) を持つもので、分数をゼロ除算に(分母がゼロの場合に)拡張する、如何なる拡張も ゼロに限る a/0=0 ことを示している。― これは、拡張分数の基本的な積の性質(a/b)(c/d) = (ac/bd)だけを仮定(要請)すると、ゼロ除算は ゼロに限る a/0=0ことを示しているので、その意義は 決定的であると考えられる。 この定理は千年以上の歴史を持つゼロ除算に 決定的な解を与えていると考えられる。
チコノフ正則化法や一般逆の方法では、一つの自然な考え方で導かれることを示しているだけで、いろいろな拡張の可能性を排除できない。道脇方式も同様である。 一意性定理とは、そもそも何、何で定まるとは、その、何、何が定める性質の本質を捉えていて、導いた性質の本質、そのものであると言える。高橋眞映教授の定理は 証明も簡潔、定理の意義は絶大であり、このような素晴らしい定理には、かつて会ったことがない。数学史上の異色の基本定理ではないだろうか。
ゼロ除算は、拡張分数が 直接、自明であるが、積の公式が成り立つと、積極的に性質を導いていることにも注目したい。(ゼロ除算は 新しい数学であるから、そのようなことまで、定義に従って検討する必要がある。)
ゼロ除算は 千年以上も、不可能であるという烙印のもとで, 世界史上でも人類は囚われていたことを述べていると考えられる。世界史の盲点であったと言えるのではないだろうか。 ある時代からの 未来人は 人類が 愚かな争いを続けていた事と同じように、人類の愚かさの象徴 と記録するだろう。 人は、我々の時代で、夜明けを迎えたいとは 志向しないであろうか。
数学では、加、減、そして、積は 何時でも自由にできた、しかしながら、ゼロで割れないという、例外が除法には存在したが、ゼロ除算の簡潔な導入によって、例外なく除算もできるという、例外のない美しい世界が実現できたと言える。
高橋の一意性定理だけで、数学はゼロ除算100/0=0,0/0=0を確定せしめていると言えると考える。 実はこの大事な定理自身は 論文にもそのまま記述されたにも関わらず、共著者名に高橋の名前が高橋教授の希望で載っていない:

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

ところが、 高橋教授がゼロ除算の一意性を証明したと 当時 アヴェイロ大学にポスドクで来ていた、イタリアのM. Dalla Riva博士に伝えたところ、そんな馬鹿な、反例を作ると猛然と挑戦したのであるが次々と失敗を続けていたが、帰る頃、驚いて高橋の結果は正しいと独自に定理を発見、証明した。― そこで、いろいろ経緯があって、共著で論文を書こうと提案していたところ、ゼロ除算そのものの研究の意味がないとして、論文と研究には参加せず、彼の結果は、齋藤のものとして良いとなった。彼らのあるグループ間では ゼロ除算は意味がないということで、意見が一致したというのである。これは数学が正しくても意味が無いという、見解の人たちが存在するという事実を述べている。アヴェイロ大学でもそのような意見であったので、アヴェイロ大学では、ゼロ除算は研究できない状況になっていた。それらの思想、感覚は、アリストテレスの世界観が宗教のように深くしみわたっていて、universe は不連続なはずがないという事である。ゼロ除算における強力な不連続性は受け入れられない、ゼロ除算はまるで、恐ろしい魔物をみるように 議論しても、発表してもならないと 数学教室の責任者たちに念を押された事実を 真実の記録として、書き留めて置きたい。
独立に証明された、Riva氏と高橋教授は、自分たちの定理の重要性を認識していなかったように感じられる。 他方、齋藤は、最初から今もなお その素晴らしさに驚嘆して感銘させられている。
以 上



再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議

ゼロで割る、ゼロ除算は 割り算を掛け算の逆と考えれば、不可能である事が簡単に証明されてしまう。しかるにゼロ除算は 自然な考え方でゼロになるということが発見されるや否や、ゼロ除算は除算の固有の意味から自明であるということと その一意性があっという間に証明されてしまった。ここでは創造性の実態、不思議な面に触れて、創造性の奇妙な観点をしっかり捉えて置きたい。― 背景の解説は 次を参照:

ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
道脇裕・愛羽 父・娘 氏たちの意見は 割り算を除算の固有の意味から考えて、自明であると結論づけたものであるが、この文脈を追記すると:
そこで、100/0 を上記の精神で考えてみよう。 まず、

100 - 0 = 100,

であるが、0を引いても 100は減少しないから、何も引いたことにはならず、引いた回数(商)は、ゼロと解釈するのが自然ではないだろうか (ここはもちろん数学的に厳格に そう定義できる)。ゼロで割るとは、100を分けないこと、よって、分けられた数もない、ゼロであると考えられる。 この意味で、分数を定義すれば、分数の意味で、100割るゼロはゼロ、すなわち、100/0=0である。
さらに、
ところで、 除算を引き算の繰り返しで計算する方法自身は、除算の有効な計算法がなかったので、実際は日本ばかりではなく、中世ヨーロッパでも計算は引き算の繰り返しで計算していたばかりか、現在でも計算機で計算する方法になっている(吉田洋一;零の発見、岩波新書、34-43)。
さらに、道脇裕氏が、2014.12.14日付け文書で、上記除算の意味を複素数の場合にも拡張して ゼロ除算z/0=0を導いているのは、新しい結果であると考えられる。
吉田洋一氏は、上記著書で、ゼロ除算の方法を詳しく書かれているにも関わらず、ゼロ除算はゼロであるとの 結果に至っていない。道脇氏が見破ったセロ除算が出ていない。 吉田氏が書かれているように、中世ヨーロッパ、アジアでも、計算機内の計算法でも広範に、使われている方法の 小さな、小さな発想が出ていない。世界は広く、四則演算を習い、使用している人は それこそ膨大な人口なのに 皆道脇氏の発想が出ていないということは 何を意味するであろうか。 もちろん、数学や物理学の天才たちを回想しても 驚くべきことである。 しかも, 物理学には、ゼロ除算が自然に現れる公式が沢山存在して、ゼロ除算は 物理学の 不明な、曖昧な点であったという事実さえ存在していた。世間でもどうしてゼロで割れないかの疑問は 繰り返し問われてきていた、問われている。
この小さな、小さな発想の1歩が出なかった理由は、除算は乗算の逆であって、ゼロ除算は不可能であるという、数学の定説が ゆり動く事がなかったという、厳然とした事実ではないだろうか? 数学的に不可能性であることが証明されていることは、あたかも 絶対的な真理のように響いてきたのではないだろうか。― しかしながら、人類は非ユークリッド幾何学の出現で、数学的な真実は変わりうることを学んでいるはずである。 実際、平行線が無数に存在したり、全然、存在しない幾何学が現れ、現在それらが活用されている。
道脇愛羽さん(当時6歳)は 四則演算の定義、基本だけを知っていて、自由な発想の持ち主であるがゆえに、得られた感覚とも言えるが、無限が好きだとか、一般角の三等分を考えるなど、相当な数覚の持ち主のように感じられる。道脇裕氏は、自由人で、相当な整数論を独力で展開するなど多彩な才能の持ち主であるが、除算の理解にも深く、複素数でも除算の考えができるなど、全く新しい結果を得ていると考える。数学の定説など ものともしない、世界を観ているのが良く分かる。それらの故にこの偉大な1歩を踏み出すことができたと考えられる。
この1歩は偉大であり、小学校以上の割り算の考えを改め、ゼロ除算を 世界の常識にすべきであると考える。
我々は、この発見の契機から、人間の創造性について沢山の事を学べるのではないだろうか。

以 上










AD

0 件のコメント:

コメントを投稿