2014年12月18日木曜日

アインシュタインも解決できなかった「ゼロで割る」問題

アインシュタインも解決できなかった「ゼロで割る」問題
「ゼロで割る」ことの意味
明けましておめでとうございます。
正月の暇つぶしに少々駄文を。少し前に話題になった「ゼロで割る」問題ですが、
小学校には9÷0=0というオレルールがあるらしい。 - Togetter
小学校で「0で割ったら0」という内容を教えているところがあるようです。自分の学校でもそうだ、という方がいらっしゃいましたらコメント欄に市区単位で場所をかいてください
むろん、数学的な答えは「解なし(不定)」、「∞または-∞」で正しいのですが。
「ゼロで割る」を物理に持ってくるとまたちょっと違った深い意味を持って来ます。
なので ↑ で終わらせるのは少々もったいないなぁ..と。
相対性理論に潜む「ゼロで割る」問題
さて、物理で見られる「ゼロで割る」パターンですが。
典型的なケースとしてアインシュタインの重力方程式を見て行きましょう。
一般相対性理論 - Wikipedia
http://ja.wikipedia.org/wiki/一般相対性理論
一般相対性理論 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 質量(地球)が空間の幾何学をゆがめている様子を2次元に落とし込んで描いたところ 歪んだ幾何学自体が重力と解釈できる 一般相対性理論 アインシュタイン方程式 入門 数学的定式化 関連書籍 基本概念 特殊相対性理論 等価原理 世界線 · リーマン幾何学 現象 ケプラー問題 · レンズ · 重力波 …
シュヴァルツシルトの解 - Wikipedia
http://ja.wikipedia.org/wiki/シュヴァルツシルトの解
シュヴァルツシルトの解 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 シュヴァルツシルトの解 (シュヴァルツシルトのかい)あるいは シュヴァルツシルト計量 ( Schwarzschild metric ) は、 一般相対性理論 における アインシュタイン方程式 (重力場の方程式)の解の 1 つで、 カール・シュヴァルツシルト が 1916年 に導き出した…
重力方程式は「物質を空間に置いたら、その重力はどうなるか?」を計算するための式です。
で、シュバルツシルト解は「静止した物質が1つだけポツンとあったら?」という最も単純な条件のもとで導き出された重力方程式の解です。ブラックホールの存在を予言した解として有名ですね。
詳しい説明は省きますが、このシュバルツシルト解に「ゼロで割る」問題が潜んでいます。
単純に言えば、
重心からゼロ距離の場合、重力はどうなるのか?
ということです。
質量m、重心からの距離rとした場合、シュバルツシルト解にはm/rを計算する項が含まれるのでr=0の時に導かれる重力は「解なし」もしくは「無限大」となります。
もし仮に重力が無限大になるとしても、無限の重力エネルギーが存在することになってしまい、これはエネルギー保存則が破綻してしまうことを意味します。
つまり物質の重心においては、
うちゅうの ほうそくが みだれる!
ということになってしまいます。
この大いなる矛盾について、現代の物理学者たちはどう説明しているのかと申しますと。
ブラックホールの事象の地平線内部は光さえも逃げられない空間。
なので、こちらからはどうやっても何が起こってるか知りようがない、知りようがないものは考える必要はないんだよHAHAHA
宇宙検閲官仮説 - Wikipedia
http://ja.wikipedia.org/wiki/宇宙検閲官仮説
宇宙検閲官仮説 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 宇宙検閲官仮説 (うちゅうけんえつかんかせつ)または、 宇宙検閲仮説 (うちゅうけんえつかせつ、cosmic censorship hypothesis)とは、 一般相対性理論 研究に登場する 概念 で、 時空 に 裸の特異点 が自然に発生することはないだろう、という ロジャー・ペンローズ が…
..という説明でお茶を濁しておりました。
ところがです。90年代に入りコンピュータシミュレーションによって、事象の地平線の外側(つまりわれわれ人類が存在する通常空間)において重力の特異点が出現するケースがありうる、ということが証明されてしまいました。コンピュータってすごいね!
裸の特異点 - Wikipedia
裸の特異点 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 裸の特異点 (はだかのとくいてん、 naked singularity )は、 一般相対性理論 における用語で、 事象の地平面 ( event horizon ) に囲まれていない、 時空 の 特異点 である。 通常、 ブラックホール の特異点は、 光 も出て行くことができない 空間 に囲まれてお…
以上から、一般相対性理論は「常に成り立つ」わけではない、ということがわかります。
ニュートンの古典力学がアインシュタインの相対性理論によって補正されたように。
ゼロ距離に近い量子サイズにおいては、相対論すら修正されるべき「何か」があると考えるべきです。
量子重力理論 - Wikipedia
量子重力理論 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 標準模型を超える物理 陽子同士を衝突させハドロンジェットと 電子に崩壊することで生成される ヒッグス粒子 を描く LHC CMS検出器 データのシミュレーション結果 標準模型 証拠 階層性問題 ダークマター 宇宙定数問題 強いCP問題 ニュートリノ振動 理論 テクニカラー カルツァ=クライン理論…
この「何か」が現在未完成の「量子重力理論」と呼ばれているもので、その最有力候補、とされているのが少し前ノーベル賞を受賞した南部先生も大きく関わっている「超ひも理論」です。
超弦理論 - Wikipedia
超弦理論 出典: フリー百科事典『ウィキペディア(Wikipedia)』 移動: 案内 、 検索 この記事の 正確性に疑問 が呈されています。 問題箇所に 信頼できる情報源 を示して、記事の改善にご協力ください。議論は ノート を参照してください。 ( 2007年7月 ) カラビ-ヤウ空間 弦理論 超弦理論 理論 弦理論 ボゾン弦理論 M理論 ( 簡易項目 ) タイプI超弦 · タイプII超…
超ひも理論は非常に有望な「究極の理論」として期待されているのですが、残念ながら現在人類の持てる科学技術力では実験で検証できないため「仮説」の領域に留まっています。
あまりに数学的・抽象的な概念を持つ理論のため、
もはや哲学の領域
と陰口をたたかれることもしばしばです。で、
結論
重心からゼロ距離の場合、重力はどうなるのか?
という最初の問いですが。
量子重力理論が正しいとするならば、時間・空間は連続的ではなく離散的なモノ(つまり最小単位が存在する)ことになりますので、
時間・空間が取り得る最小単位(おそらくプランク長程度)以下になることはない、とみなすことができる。よって「ゼロ距離」という物理量は存在しないと考えてよい。
というのがその解答になるのではないかと。
..以上、いかがでしたでしょうか?お楽しみ頂ければ幸いです。それでは。http://matome.naver.jp/odai/2135710882669605901
ゼロ除算100/0=0, 0/0=0の意義:
1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 簡明で、決定的な解 1/0, 0/0=0をもたらしたこと。
2) ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい構造が確立されたこと。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた(注参照)。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、 独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていたとされている。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な定理は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;
すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。
11)ゼロ除算が可能であるか否かの議論について:
現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかの未知の分野が望めて、大いに期待できる世界が拓かれる。
12)ゼロ除算は、数学ばかりではなく、 世界観や文化に大きな影響を与えている。
次を参照:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
2014.12.14.15:20

再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
(12月10日16時 論文精読を一通り通読したら無性に書きたくなって始めたものである)
これは声明166の延長にあるので、まず、その要点を振り返っておこう: ―
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観:
ゼロ除算の新しい結果とは 簡単に述べれば、分数、割り算の意味を自然に拡張すると、あるいは割り算の固有の意味から、何でもゼロで割れば ゼロになると言うこと、そして、
関数 y = 1/x のグラフは、原点で ゼロである、すなわち、 1/0=0 である。複素解析学では、無限遠点が数値で0、すなわち、原点に一致している ということである。驚くべきことは、原点における 強力な不連続性にある。これらの現象は奇妙にも、ユニバースの普遍的な現象として 惹きつけるものがある。永遠の彼方は、どこまでも遠く行くが、その先は、突然、現在に戻っている。始点と終点の一致、無限とゼロの一致である。理想的な2つの質点間に働く、ニュートンの万有引力F は 2つの質量をm、M、万有引力定数をGとすると、距離をrとすれば
F = G mM/r^2。
rをゼロに近づければ 正の無限に発散するが、rが ゼロに成れば突然、ゼロである。2つの質点が重なれば、力は働かず、安定しないように見えるが、2つが分離すれば、大きな力に逆らう必要が有り、実は安定していると説明できる。ゼロと無限の裏腹の関係と捉えることができる。これは意外に、2元論における 対立するもの一般における裏腹の関係と捉えることができる: 生と死、戦争と平和、男と女、表と裏、すなわち、2元論― 神は2を愛し給う:
No.81, May 2012(pdf 432kb)
19/03/2012 - ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅広く 面白く触れたい。
における 2元の奇妙な関係である。
他方、ゼロ除算は、爆発や衝突における強力な不連続性を表現しているとして、論文で触れられているが、まこと、ユニバースの普遍的な現象として そのような強力な不連続性が存在するのではないだろうか。糸でも切れる瞬間と切れるまでの現象、物体でも近づいている場合と合体した場合では、全然違う現象として考えられ、強力な不連続性は 世に見られる普遍的な現象ではないだろうか。
生も死も表裏一体である、勝利も敗北も、喜びも苦しみも、幸せも不幸も、自由も束縛も、愛も憎しみも、等々表裏一体であるとの世界観が 視野と心の在りように新しい世界観をもたらすと考えられる。―
ゼロ除算の、無限とゼロの微妙な関係に驚嘆している間に、空がどんどん晴れてくるように新しい世界の、視野がどんどん広がり、驚きの感情が湧いている。言わば、明暗が、両極端のように、明、暗と分けられたものではなく、微妙な密接な、関係である。その内容は広がりと深さを持っていて簡単に表現できるものではない。また、みえた世界をそのまま表現すれば、現在でもなお、天動説が地動説に変わったときのように、また、非ユークリッド幾何学が出現したときのように 世は騒然となるだろう。そこで、注意深く、各論を、断片を 折をみて、表現しよう。
そこで、初回、生命の本質的な問題、生と死の問題をすこし触れたい。
食物連鎖の生物界の冷厳な事実、食われるものと食うものの立場。声明36で大きな命の概念で全体を捉えようとしたが、それらは殆ど等価の立場ではないだろうか。実際、猫がねずみをくわえて誇らしげに通りすぎていくのを見た。ところが奇妙にも、ねずみは歓喜の喜びにひたって悠然としてくわえられているようにみえた。自然の理。蛇が燕の巣を襲い、全滅させられたが、蛇は悠然と上手くいきました、ごめんなさいというような表情で消えていった。襲われた燕たちは一瞬で魔神に掛かったように気を失い、蛇に飲み込まれてしまった。少し、経つと元気に巣立ち厳しい自然の中を南国まで飛んで行っていろいろ苦労するよりは、蛇のお腹で 安らかな終末の方がよほどましだというような情感を覚えた。もちろん、ヒナを襲われた親鳥は切なく天空を舞っていたが、やがて、ヒナたちは最も良い生涯を終えたと、本能的に感じて、新しい生命活動に、励み出している。このようなことを何万年と繰り返してきたのが、燕と蛇の関係である。暗(あん)という面には ちょうど明(めい)と同じような明るい面があるのではないだろうか。明暗は対立概念ではなくて、微妙に調和がとれているのではないだろうか。ユニバースにおける全体の調和を観、述べている。人類が生命のただ延長を志向しているとすれば、それは、古い世界観に基づく無明の世界だろう。夜明けを迎えた、在るべき世界観とは 生も死も殆ど等価であり、共に愛すべきものであるということである。在るも良い、消えるも良い。ゼロ除算の驚きは そのような感性を育てているように感じられる。死からの開放に寄与するだろう。生命の誕生は素晴らしく、喜びと夢が湧いてきて、大きな光が差してくるようである。世界が開かれてくる。われわれの終末も似たようなものではないだろうか。大きな世界、私たちをこの世に送り込んだものの 大きな愛に満ちた世界にとけこんでいくようなものではないだろうか。この意味で、あらゆる生命は 大きな愛に包まれて、 支えられていると感じられるだろう。これは神の予感を述べている。 私たちは、愛されている(愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。)。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory. Vol.4 No.2 2014 (2014), 87-95.http://www.scirp.org/journal/ALAMT/

0 件のコメント:

コメントを投稿