2017年2月2日木曜日

0

0

文字 0 によって表されるものは、何もないことに対応する基数自然数[1])であり、1 の直前なる序数順序数)であって、最小の非負整数である。(れい、ぜろ)、ゼロ: zero)、ヌル: Null)、ノート: naught)、ニヒル: nihil)などと読まれる。また、文字の形状から、稀にまるあるいはオーなどのように呼ばれることもある。なお、日本の通話表においては、0は「数字のまる」と送られる。
数としての 0 は、整数全体、実数全体(あるいはもっと一般の数からなる代数系で)加法単位元としての役割を演じる。文字としての 0 の使用は位取りによる記数法におけるプレースホルダとして

数としての 0[編集]

0 は 1 の直前の整数である。多くの数体系で 0 は負の概念よりも前に同定され、負の概念は 0 よりも小さいものとして理解される。0 は偶数である[2]。0 は正の数でも負の数でもない。0 を自然数とする定義もあり、その場合自然数と正の整数は同義ではない。
0 は数量が空っぽであることを意味する数である。兄弟が0人いるというのは兄弟がひとりも居ないことを意味し、重さが0であるというのは重さが無いことを表す。あるいは二つの砂山の砂粒の数の差が 0 であるということは、その二つの砂粒の数の差がないことを意味する。
数を数えはじめるまえは、ものが 0 個であると仮定することができる。つまり、最初のものを数え始めるまでは 0 で、最初のものを持ってきてはじめて 1 個あると勘定することになる。ほとんどの歴史学者をはじめ世界中の人々はグレゴリオ暦ユリウス暦から紀元0年を除いて考えるが、天文学者などは計算上不都合があるため暦に紀元0年を含めて考える。また、(紀元)0年という文言は、時間における新しい起点となりうる、非常に意義深い出来事を記述する場合にも用いられることがある。

歴史[編集]

0 の起源[編集]

」を表す「0」を数の対象として考える概念の発生は、数学上の飛躍的な進歩の過程の一つと考えられている。
バビロニアマヤ文明では、位取り記数法で空位を示す記号としての 0 が使われていた。バビロニアを含むメソポタミア文明六十進法、マヤは二十進法を用いており、それぞれで位が 0 であることを示す独自の記号が発明された。しかし 0 そのものを数として扱ってはいなかった。
一方、古代エジプトでは 0 の存在を知っていたが発達せず、それを表す記号もなかった。また、受け入れられなかった理由としては、無理数と似たところがあって、四則演算のうちの除算において、0で割ることができないことが挙げられる。
130年、プトレマイオスギリシア文字を用いた六十進法の表記において、0 を導入した。記録に残っている最も古い、数としての 0 である。ただしプトレマイオスが 0 を用いたのは分数部分(など)だけであり、整数部分()には使わなかった。
その後、古代インドの数学で「膨れ上がった」「うつろな」の意 サンスクリット語: शून्य, śūnya (シューニャ 膨れ上がった物は中が空であるとの考え方から来ている。)すなわち数としての「0」の概念が確立された。ブラーマグプタは、628年に著した『ブラーマ・スプタ・シッダーンタ』において、0 と他の整数との加減乗除を論じ、0 / 0 を 0 と定義した以外はすべて現代と同じ定義をしている。そしてこれがアラビア数学に伝わりフワーリズミーの著作のラテン語訳 Algoritmi de numero Indorum により西欧に広まっていった。しかし、ヨーロッパでは得体の知れない概念から悪魔の数字とみなされローマ法王により使用が禁じられた時代もあった[10]
中国では算木が紀元前から使われており、位取り記数法が確立していたが、空位は空白で表していた。算木を実際に使うときは誤解がないが、それを書写するときは紛らわしい。後に空位を「〇」と書くようになった。これはインドの「0」が輸入されたとも、元々、漢文で空白を表す「囗」が「〇」に変化したともいう。漢数字#〇、零を参照。

仏教における 0[編集]

詳細は「空 (仏教)」を参照
仏教ではシューニャ(漢訳で空)は真に実在するものではなく、その真相は空虚であると説いている。

数学における 0 の使用[編集]

初等代数学[編集]

数の 0 は最小の非負整数である。0 の後続の自然数は 1 であり、0 より前に自然数は存在しない。数 0 を自然数に含めることも含めないこともあるが、0 は整数であり、有理数であり、実数(あるいは代数的数、複素数)である。
数 0 は正でも負でもなく、素数でも合成数でも単数でもない。しかし、0は偶数である。
以下は数 0 を扱う上での初等的な決まりごとである。これらの決まりは x を任意の実数あるいは複素数として適用して構わないが、それ以外の場合については何も言及していないということについては理解されなければならない。
  • 加法: x + 0 = 0 + x = x. つまり 0 は加法に関する単位元である。
  • 減法: x − 0 = x, 0 − x = −x.
  • 乗法: x · 0 = 0 · x = 0.
  • 除法: x が 0 でなければ 0x = 0 である。しかし x0 は、0 が乗法に関する逆元を持たないために、(従前の規則の帰結としては)定義されない(ゼロ除算を参照)。実数の範囲で考えるならば、正の数 x に対し、商 xy の y を 0 に正の側から近づけるならば、商の値は正の無限大に向かって無限に増加する。一方 y を負の側から 0 に近づければ、商の値は負の値に近づく。言い換えれば、
    {\displaystyle x>0\implies \lim _{y\to 0^{+}}{x \over y}=+\infty }
    かつ
    {\displaystyle x>0\implies \lim _{y\to 0^{-}}{x \over y}=-\infty }
    が成立する。
  • 冪乗: x = 0 の場合にきちんと定義できないまま残される文脈があること(0の0乗を参照)を除けば、x0 = 1 である。任意の正の実数 x に対して 0x = 0 である。
  • 00 なる式が、f(x)g(x) の形の式の極限を決定しようとするなかで、それぞれ独立に分子分母の極限を取った結果として現れるかもしれない。これは不定形と呼ばれる。これは単に必ずしも極限が求まらないということを意味するものではなく、むしろ f(x)g(x) の極限は、それが存在するならば、ロピタルの定理のような別の方法によって求めるべきであるということを意味する。
  • 0 個の対象の和は 0 であり、 0 個の対象の積は 1 である。階乗 0! は 1 と評価される。
  • 0 = 13 - 12 = 03 - 02、次は4。(オンライン整数列大辞典の数列 A045991)
  • フィボナッチ数列では、0は1の前者である。
  • 図形数では、1の前に0を含めることがある。
  • 1桁は全て回文数である。そのため、0も回文数である。

数学におけるその他の用法[編集]

  • 集合論では 0 は空集合の濃度である。ある人が林檎を一つも持っていないならば、そのひとは 0 個の林檎を持っている。実際のところ、集合論から展開されるある種の数学では 0 は空集合のこととして定義される。こう定義したとき、0 としての空集合は元を持たない集合としての空集合に対するVon Neumann cardinal assignmentであり、空集合に対する濃度は 0 個の元を持つという意味が割り当てられた値としての空集合を返す。
  • 同じく集合論で、0 は最小の順序数であり、空集合を整列集合とみなしたものに対応する。
  • 命題論理では 0 を真理値であることを表すのに用いる。
  • 抽象代数学では 0 は一般に(考えている構造において定義されているならば)加法に関する単位元としての、あるいは乗法に関する吸収元としての、零元を表すのに用いられる。
  • 束論では 0 は有界束最大元を表すのに用いられる。
  • 圏論では 0 は始対象を表すのに用いられる。
  • ゲーデル数では、0は空文字列を意味する。

自然科学における 0 の使用[編集]

物理学における使用[編集]

多くの物理量において 0 は特別な値であるが、それは物理的な必然性を持って設定されることもあれば、何らかの任意の基準を適当に割り当てることもある。例えば熱力学温度における 0 度は理論的な最低温度(絶対零度)である一方、セルシウス度の 0 度は(数ある物質の中から)融点を選んで定義されている。
音の強さの単位であるデシベルホンは、基準として選んだ音の強さ(例えば、人間が聞き取れる最小の音量)を 0 と定めての相対値である。
零点振動量子力学不確定性原理)において許される最低のエネルギー状態における原子の振動である。

計算機科学における 0 の使用[編集]

人類の歴史の多くを通じて、ものは 1 から数え始めるのは当然であり、初期の計算機科学において、また FORTRAN や COBOL などのプログラミング言語でも 1 から始める方式が普通であった。しかし、1950年代後半に LISP が配列の要素で 0 から数える方法を採用し、さらに Algol 58 が柔軟な配列の添字(正、負、0 のいずれの整数も可)を導入して以降、多くのプログラミング言語がこれに倣うようになった。例えばC言語において、n 個の要素を持つ配列の添字は 0 から n-1 までである。こうすることで、配列の先頭アドレスに単に添字を足すだけで、その要素の位置を求めることが出来る利点がある。なお「0 始まり」と「1 始まり」が混在するケースもあり、例えば Java は言語としては 0 始まりを採用しているが、JDBC のインデックスは 1 始まりである。
ヌルポインタはどんなオブジェクトも指さないポインタである。C言語においては整数定数の 0 がポインタの文脈で解釈されるとヌルポインタとなる。これは単なる記法であり、実際には計算機環境に適合した内部表現のヌルポインタが作られる(0番地と決まっているわけではない)。0番地を指すポインタがヌルポインタとしてよく用いられていたことに由来する。
0 はしばしばコンピュータにおいて特別な意味を持つ。C言語を始めとする多くの言語では、真偽値として評価する文脈において 0 は偽を意味すると判断される(0以外の全ての値は真と判断される)。一方、プログラムが戻り値として 0 を返した場合は正常終了と見なされる事が多い。errnoなどのエラーコードにおいても 0 は「エラーでない」の意味によく割り当てられる。コードポイントの 0 ('\0')はヌル文字であり、文字列の終端を意味する。
−0 は、数学的には 0(または +0 )と厳密に等しい数であるが、多くの浮動小数点数においては +0 と −0 で異なる表現が与えられている。また、整数でも1の補数など、表現方法によっては +0 と −0 に別の表現が与えられることがある(現代の多くのコンピュータで採用されている2の補数では区別はない)。
 
 
再生核研究所声明3532017.2.2) ゼロ除算 記念日

2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは

再生核研究所声明 148(2014.2.12): 100/0=0,  0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志

で、最新のは

Announcement 352 (2017.2.2):  On the third birthday of the division by zero z/0=0 

である。

アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。
心すべき要点を纏めて置きたい。

1)     ゼロの明確な発見と算術の確立者Brahmagupta (598 - 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。
2)     予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。
3)     ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。
4)     この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。
5)     いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。
6)     ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。
以 上

追記:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf

0 件のコメント:

コメントを投稿