鏡像法[编辑]
鏡像法(又称镜像电荷法)是一種解析靜電學問題的基本工具。對於靜電學問題,鏡像法將原本問題的某些元素改換為假想電荷,同時保證仍然滿足定解問題原有的的邊界條件(請參閱狄利克雷邊界條件或諾伊曼邊界條件)。
例如,給定一個由一片無限平面導體和一個點電荷構成的物理系統,這無限平面導體可以被視為一片鏡子,在鏡子裡面的鏡像電荷與鏡子外面的點電荷,所形成的新系統,可以使得導體平面上的電場垂直于導體,與原本系統等價。藉此方法,我們可以將問題簡化,很容易地計算出導體外的電勢、導體的表面感應電荷密度、總感應電荷等等。
镜像法的有效性是唯一性定理的必然结果,该定理指出如果指定了在体积 V 的整个区域内的电荷密度和 V 的所有边界上的电位值,区域 V 内的电位唯一确定。另外,应用此结果到高斯定理的微分形式就能表明,在由导体包围的包含电荷密度为 ρ 的体积 V 中,如果每个导体所带电荷已经给出,那么电场是唯一确定的。拥有电势或电场的信息以及相应边界条件,只要在指定区域的电荷分布满足泊松方程并设定正确的边界值,我们就可以把我们考虑的电荷分布换为更容易分析的结构。 [1]
目录 [隐藏]
1 唯一定理
2 範例
2.1 點電荷與無限平面導體
2.1.1 多個點電荷與無限平面導體
2.2 點電偶極子與無限平面導體
2.3 點電荷與圓球殼導體
2.4 電偶極子與圓球殼導體
3 反演法
4 參閱
5 參考文獻
唯一定理[编辑]
唯一定理表明,任意能夠滿足給定條件的解答,是唯一存在的解答。因此,給定條件唯一地決定了這解答。
舉例而言,假若,在一個三維空間區域裏,電勢 \phi 滿足
\nabla^2\phi=f ,
而在區域的表面,又滿足邊界條件
\phi=g ,
其中,f 和 g 是函數,
則 \phi(x,\,y,\,z) 是唯一的解答函數。
唯一性定理適用於以下三种邊界情况:
给出了整个边界的势函数;
给出整个边界的势函数的法向导函数;
给出整个边界部分场的势函数和其他部分的势函数的法向导函数;
應用唯一定理於鏡像法,只要問題能夠給足上述任意一種邊界條件,則求得的電勢函數解答必定是唯一的正確解答。
範例[编辑]
點電荷與無限平面導體[编辑]
原本系統。位於 xy-平面的是一個接地的無限平面導體。其上方的點電荷 q 的坐標是 (0,\,0,\,a) 。
鏡像法的新系統。坐標是 (0,\,0,\, - a) 的鏡像電荷 - q 替代了無限平面導體。
舉一個簡單的例子,如右圖所示,設定一個接地的無限平面導體於 xy-平面,其上方有一個點電荷 q ,坐標是 (0,\,0,\,a) 。應用庫侖定律和相關靜電理論,這物理系統的各種物理量,像導體表面的電荷分佈,或點電荷所感受到的作用力,都不是很容易可以計算求得。
應用鏡像法,可以將無限平面導體改換成一個鏡像電荷,坐標是 (0,\,0,\, - a) ,電量為 - q 。在任意點 (x,\,y,\,z),\ z>0 ,新系統的電勢與原本系統的電勢完全相同;而且滿足邊界條件——導體的電勢為零。
在新系統裏,應用庫侖定律,可以很容易地計算出點電荷所感受到的作用力。
採用圓柱坐標 (\rho,\,\phi,\,z) ,在 +z-半空間內的任意一點,其電勢 V(\rho,\,z) 可以很容易的計算出來(這系統與方位角 \phi 無關):
V(\rho,\,z) = \frac{1}{4 \pi \epsilon_0} \left( \frac{q}{\sqrt{\rho^2 + (z - a)^2}} + \frac{-q}{\sqrt{\rho^2 +(z+a)^2}} \right) 。
根據唯一定理,這解答是原本問題的唯一解答。
無限平面導體的表面電荷密度 \sigma(\rho) 是
\sigma = - \epsilon_0 \frac{\partial V}{\partial z} \Bigg|_{z=0}= - \ \frac{q a}{2 \pi (\rho^2 + a^2)^{3/2} } 。
積分表面電荷密度於無限平面導體,可以得到無限平面導體的總感應電量 Q_t :
Q_t = \int_{0}^{2\pi}\int_{0}^{\infty} \sigma\left(\rho\right)\, \rho\,d\rho\,d\theta
= - \ \frac{qa}{2\pi} \int_{0}^{2\pi}d\theta \int_{0}^{\infty}\frac{\rho\,d\rho}{\left(\rho^2 + a^2\right)^{3/2}}
= - q 。
答案非常簡單,就是 - q 。
這問題指引出一個更進階的問題:給予一對平行的無限平面導體,其中間有一個點電荷,求兩片無限平面導體之間的電勢?這是一個非常有意思,值得研習的問題[2]。
多個點電荷與無限平面導體[编辑]
延伸至兩個點電荷的物理系統。
鏡像法可以延伸至兩個或多於兩個點電荷。只要對於每一個點電荷,都添加一個對應的鏡像電荷。根據疊加原理,總電勢等於所有點電荷、鏡像電荷產生的電勢的總和。在 xy-平面的任意一位置,點電荷產生的電勢會與其鏡像電荷產生的電勢相抵消。因此,在 xy-平面的任意一位置,總電勢等於零,滿足邊界條件。
圖右展示一個物理系統案例,裡面有兩個真實的點電荷和一個無限平面導體,兩個點電荷的坐標分別是 (x_1,\,y_1,\,z_1) 和 (x_2,\,y_2,\,z_2) ,電量分別是 q_1 和 q_2 。應用鏡像法,可以將無限平面導體替換為兩個鏡像電荷,坐標分別是 (x_1,\,y_1,\, - z_1) 和 (x_2,\,y_2,\, - z_2) 電量分別是 - q_1 和 - q_2 。
點電偶極子與無限平面導體[编辑]
假設,在無限平面導體上方,有一個電偶極子,其電偶極矩是 \mathbf{M}=(M_x,\,M_y,\,M_z) ,坐標是 (x,\,y,\,z) ,則可以將無限平面導體改換為一個反對稱的鏡像電偶極子,電偶極矩是 \mathbf{M}'=(M_x,\,M_y,\, - M_z) ,坐標是 (x,\,y,\, - z) 。
點電荷與圓球殼導體[编辑]
應用鏡像法於半徑為 R 的圓球殼導體的簡圖。設定球坐標系的原點於圓球殼殼心。綠點是點電荷 q ,在圓球殼內部,位置是 \mathbf{P} 。紅點是鏡像電荷 - qR/p ,位於圓球殼外部,與圓心的距離是 R^2/p 。兩個點電荷在圓球殼 r=R 產生的電勢是零。
鏡像法也可以應用於圓球殼導體[3]。實際而言,無限平面導體的鏡像法解答是圓球殼導體鏡像法解答的特別案例。只要將圓球殼的半徑拉長至無窮大,就可以得到無限平面導體。
如圖右,採用原點位於圓球殼殼心的球坐標系。被置於真空中的接地的圓球殼,其半徑為 R ,內部有一個點電荷 q ,位置是 \mathbf{P} ,以綠色表示。這點電荷的鏡像電荷,電量是 - qR/p ,位於圓球殼外部,與圓心的距離是 R^2/p ,以紅色表示。兩個點電荷所產生的電勢,在位置 \mathbf{r} ,可以疊加為
4\pi\epsilon_0 V(\mathbf{r})=\frac{q}{|\mathbf{r}_1|}+\frac{(-qR/p)}{|\mathbf{r}_2|}=
\frac{q}{\sqrt{r^2+p^2-2\mathbf{r}\cdot\mathbf{p}}}+
\frac{(-qR/p)}{\sqrt{r^2 +\frac{R^4}{p^2}-\frac{2R^2}{p^2}\mathbf{r}\cdot\mathbf{p}}}
經過一番運算,可以得到
V(\mathbf{r})=\frac{1}{4\pi \epsilon_0}\left[
\frac{q}{\sqrt{r^2+p^2-2\mathbf{r}\cdot\mathbf{p}}} - \frac{q}{\sqrt{\frac{r^2p^2}{R^2}+R^2 - 2\mathbf{r}\cdot\mathbf{p}}}\right]
。
請注意,在圓球殼(r=R) ,電勢為零,等效于接地。只有在圓球殼以內(rR),由於鏡像電荷並不真實存在,而是虛擬的,所以V(\mathbf{r}) 公式不正確。儘管球內並無實際的鏡像電荷,但是圓球殼的內表面仍然存在感應電荷,不過數值與鏡像電荷完全不同。假設點電荷位於 z-坐標軸,那麼,表面感應電荷密度 \sigma 是天頂角 \theta 的函數,以方程式表達為
\sigma(\theta)= \epsilon_0 \frac{\partial V}{\partial r} \Bigg|_{r=R}
=\frac{ - q(R^2 - p^2)}{4\pi R(R^2+p^2 - 2pR\cos\theta)^{3/2}} 。
積分感應電荷密度於所有立體角,則可以得到在圓球殼的總感應電量 Q_t :
Q_t=\int_0^\pi d\theta \int_0^{2\pi} d\phi\,\,\sigma(\theta) R^2\sin\theta = - q
。
由於總感應電量與點電荷電量的代數和等於零,所以整個物理系統的總電量等於零。圓球殼導體能夠除去點電荷所造成的非球形對稱性。在圓球殼以外的物理是球形對稱的。應用高斯定律,可以計算出電場 \mathbf{E} ,
\mathbf{E}=\mathbf{0} 。
假設圓球殼不接地,則圓球殼外表面的感應電荷密度是
\sigma=q/4\pi R^2 。
圓球殼外,離圓心距離為 r 的電場 \mathbf{E} 為
\mathbf{E}=\frac{q}{4\pi\epsilon_0 r^2}\hat{\mathbf{r}} 。
接地圓球導體殼外的電場線。
請注意,這問題的逆反問題也可以用鏡像法解析。在一個半徑為 R 、接地的圓球殼導體外部,擺放一個點電荷 q 於位置 \mathbf{p} ,離圓心距離為 p 。那麼,圓球殼外部的電勢為點電荷的電勢與圓球殼內部的鏡像電荷的電勢的總和。類似前面案例,鏡像電荷的電量是 - qR/p ,位置是 (R^2/p^2)\mathbf{p} 。由於圓球殼內部的真實電量是零,所以,圓球殼內部的電勢為常數。
電偶極子與圓球殼導體[编辑]
鏡像法對於電偶極矩的計算公式比較複雜。假若我們將電偶極子視為一對距離很近的點電荷,則鏡像電偶極子的電量和電偶極矩都會有所改變。給予電偶極子的電偶極矩為 \mathbf{M} ,位置為 \mathbf{p} ,在半徑為 R 圓球殼的內部。其鏡像電偶極子的位置會是 (R^2/p^2)\mathbf{p} ,鏡像電荷的電量為
q'=\frac{R\mathbf{p}\cdot\mathbf{M}}{p^3} ,
電偶極矩為
\mathbf{M}'=R^3\left[ - \frac{\mathbf{M}}{p^3} +\frac{2\mathbf{p}(\mathbf{p}\cdot\mathbf{M})}{p^5}\right] 。
反演法[编辑]
鏡像法的圓球殼計算方式直接地引導出反演法。採用球坐標 (r,\,\theta,\,\phi) ,給予一個位置的調和函數 \Phi(r,\,\theta,\,\phi) ,則對於一個半徑為 R 的圓球,此調和函數的鏡像調和函數是
\Phi'(r,\,\theta,\,\phi)=\frac{R}{r}\Phi\left(\frac{R^2}{r},\,\theta,\,\phi\right) 。
給予一集合的點電荷,位置和電量分別為 (r_i,\,\theta_i,\,\phi_i) 、 q_i 。假若其產生的電勢是 \Phi ,則其鏡像電勢 \Phi' 是由一集合位置和電量分別為 (R^2/r_i,\,\theta_i,\,\phi_i) 、 Rq_i/r_i 的鏡像電荷所產生的。給予一個連續電荷分佈,電荷密度為 \rho(r,\,\theta,\,\phi) 。假設其其產生的電勢是 \Phi ,則其鏡像電勢 \Phi' 是由電荷密度為 \rho'(r,\,\theta,\,\phi)=(R/r)^5\rho(R^2/r,\,\theta,\,\phi) 的連續電荷分佈產生的。http://zh.wikipedia.org/wiki/%E9%8F%A1%E5%83%8F%E6%B3%95
再生核研究所声明202(2015.2.2)ゼロ除算100/0=0,0/0=0誕生1周年記念声明 ― ゼロ除算の現状と期待
ゼロ除算の発見、経過、解説などについては、結構な文献に記録されてきた:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9)ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25) Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185: The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1 ―
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
再生核研究所声明199(2015.1.15)世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0
ゼロ除算100/0=0,0/0=0誕生1周年記念日に当たり、概観して共同研究者と共に夢を明るく 楽しく描きたい。まずは、ゼロ除算の意義を復習しておこう:
1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 簡明で、決定的な解 ゼロで 何でも割れば ゼロ z/0=0 である をもたらしたこと。
2)ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立されたこと。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に 非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていたとされている。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な結果は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる という定理 である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。
11)ゼロ除算が可能であるか否かの議論について:
現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。しかしながら、出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかという未知の分野が望めて、大いに期待できる世界が拓かれる。
12)ゼロ除算は、数学ばかりではなく、 人生観、世界観や文化に大きな影響を与える。
次を参照:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として表していることである。
ゼロ除算は 既に数学的に確定され、その意義も既に明らかであると考えられるが、声明199にも述べられているように、ゼロ除算が不可能であるとの世の常識、学術書、数学は 数学者の勝手な解釈による歴史的な間違いに当たる ことをしっかりと理解させ、世の教育書、学術書の変更を求めていきたい。― 誰が、真実を知って、偽りを教え、言い続けられるだろうか。― 教育に於ける除算、乗算の演算の意味を 道脇方式で回復させ、新しい結果 ゼロ除算を世に知らしめ、世の常識とさせたい。それは ちょうど天動説が地動説に変わったように 世界史の確かな進化と言えるだろう。
ゼロ除算の研究の進展は、数学的には 佐藤超関数の理論からの展開、発展、 物理学的には ゼロ除算の物理法則の解釈や、衝突現象における山根の面白い解釈の究明 などに興味が持たれる。しかしながら、ゼロ除算の本質的な解明とは、Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の自然な現象として受け入れられることである。数学では、その強力な不連続性を自然なものとして説明され、解明されることが求められる。
以 上
ゼロ除算は、誰にもわかるが、みんな間違って理解している。
正しい結果は、驚嘆すべきもので、何でも0で割れば、0ということが最近発見された。
ゼロ除算は、不可能であると誰が最初に言ったのでしょうか・・・・
7歳の少女が、当たり前である(100/0=0、0/0=0)と言っているゼロ除算を 多くの大学教授が、信じられない結果と言っているのは、まことに奇妙な事件と言えるのではないでしょうか。
小学校以上で、最も知られている数学の結果は何でしょうか・・・
ゼロ除算(100/0=0、0/0=0)かピタゴラスの定理ではないでしょうか。
1+0=1 1ー0=0 1×0=0 では、1/0・・・・・・・・・幾つでしょうか。
0??? 本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・
割り算を掛け算の逆だと定義した人は、誰でしょう???
加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
ゼロ除算 100/0=0 は 説明も不要で、記号を含めて 数学的に既に確定していると考える。 もちろん、そこでは100/0 の意味をきちんと捉え、確定させる必要がある。 100/0 は 割り算の自然な拡張として ある意味で定義されたが、 その正確な意味は微妙であり、いろいろな性質を調べることによって その意味を追求して行くことになる:
ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
100/0=0 というのであるから、それは 100= 0 x0 というような意味を有するであろうかと 問うことは可能である。 もちろん、x を普通の掛け算とすると0x0 =0 となり、矛盾である。ところが山根正巳氏によって発見された解釈、物理的な解釈は絶妙に楽しく、深い喜びの情念を与えるのではないだろうか:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
等速で一直線上 異なる方向から、同じ一定の速さvで、同じ質量mの物体が近づいているとする。 その時、2つの物体の運動エネルギーの積は
\begin{equation}
\frac{1}{2}m{ v}^2 \times \frac{1}{2}m{(- v)^2} =E^2.
\end{equation}
で 一定E^2である。
ところが2つの物体が衝突して止まれば、vは ともにゼロになり、衝突の後では見かけ上
\begin{equation}
0 \times 0 =E^2.
\end{equation}
となるのではないだろうか。 その時はE^2 は 熱エネルギーなどに変わって、エネルギー保存の法則は成り立つが、ある意味での掛け算が、ゼロ掛けるゼロになっている現象を表していると考えられる。 ゼロ除算はこのような変化、不連続性を捉える数学になっているのではないだろうか。 意味深長な現象を記述していると考える。
運動エネルギー、物質は数式上から消えて、別のものに変化した。 逆に考えると、形式上ないものが変化して、物とエネルギーが現れる。これはビッグバンの現象を裏付けているように感じられる。 無から有が出てきたのではなくて、何かの大きな変化をビッグバンは示しているのではないだろうか?
以 上
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
ゼロで割る、ゼロ除算は 割り算が掛け算の逆と考えれば、不可能である事が簡単に証明されてしまう。しかるにゼロ除算はある自然な考え方でゼロになるということが発見されるや否や、ゼロ除算は除算の固有の意味から自明であるということと その一意性があっという間に証明されてしまった。ここでは創造性の実態、不思議な面に触れて、創造性の奇妙な観点をしっかり捉えて置きたい。― 背景の解説は 次を参照:
ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
道脇裕・愛羽 父・娘 氏たちの自明であるという解釈は 再生核研究所声明194で纏めたので、ここでは高橋の一意性定理を確認して置きたい。
まず、山形大学の高橋眞映 名誉教授によって与えられた 定理とその完全な証明を述べよう:
定理 Rを実数全体として、 Fを R x R からRへの写像(2変数関数)で、全ての実数 a、b、c、d に対して
F (a, b)F (c, d)= F (ac, bd)
および b がゼロでない限り、
F (a, b) = a/b
とする。 このとき、 F (a, 0) = 0 が導かれる。
証明 実際、 F (a, 0) = F (a, 0)1 = F (a, 0)(2/2) = F (a, 0)F (2, 2) = F (ax 2, 0 x 2) = F (2a, 0) = F (2, 1)F (a, 0) = 2F (a, 0).。 よって F (a, 0) = 2F (a, 0)、ゆえに F (a, 0)=0。
この定理で、F (a, 0) を a/0 と定義するのは自然であり、実際、 そう定義する。 ここは大事な論点で、チコノフ正則化法や道脇方式で既にa/0が定義されていれば、もちろん、定理ではF (a, 0) =a/0 が導かれたとなる。
定理は 分数の積の性質 (a/b)(c/d) = (ac/bd) を持つもので、分数をゼロ除算に(分母がゼロの場合に)拡張する、如何なる拡張も ゼロに限る a/0=0 ことを示している。― これは、拡張分数の基本的な積の性質(a/b)(c/d) = (ac/bd)だけを仮定(要請)すると、ゼロ除算は ゼロに限る a/0=0ことを示しているので、その意義は 決定的であると考えられる。 この定理は千年以上の歴史を持つゼロ除算に 決定的な解を与えていると考えられる。
チコノフ正則化法や一般逆の方法では、一つの自然な考え方で導かれることを示しているだけで、いろいろな拡張の可能性を排除できない。道脇方式も同様である。 一意性定理とは、そもそも何、何で定まるとは、その、何、何が定める性質の本質を捉えていて、導いた性質の本質、そのものであると言える。高橋眞映教授の定理は 証明も簡潔、定理の意義は絶大であり、このような素晴らしい定理には、かつて会ったことがない。数学史上の異色の基本定理ではないだろうか。
ゼロ除算は、拡張分数が 直接、自明であるが、積の公式が成り立つと、積極的に性質を導いていることにも注目したい。(ゼロ除算は 新しい数学であるから、そのようなことまで、定義に従って検討する必要がある。)
ゼロ除算は 千年以上も、不可能であるという烙印のもとで, 世界史上でも人類は囚われていたことを述べていると考えられる。世界史の盲点であったと言えるのではないだろうか。 ある時代からの 未来人は 人類が 愚かな争いを続けていた事と同じように、人類の愚かさの象徴 と記録するだろう。 人は、我々の時代で、夜明けを迎えたいとは 志向しないであろうか。
数学では、加、減、そして、積は 何時でも自由にできた、しかしながら、ゼロで割れないという、例外が除法には存在したが、ゼロ除算の簡潔な導入によって、例外なく除算もできるという、例外のない美しい世界が実現できたと言える。
高橋の一意性定理だけで、数学はゼロ除算100/0=0,0/0=0を確定せしめていると言えると考える。 実はこの大事な定理自身は 論文にもそのまま記述されたにも関わらず、共著者名に高橋の名前が高橋教授の希望で載っていない:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
ところが、 高橋教授がゼロ除算の一意性を証明したと 当時 アヴェイロ大学にポスドクで来ていた、イタリアのM. Dalla Riva博士に伝えたところ、そんな馬鹿な、反例を作ると猛然と挑戦したのであるが次々と失敗を続けていたが、帰る頃、驚いて高橋の結果は正しいと独自に定理を発見、証明した。― そこで、いろいろ経緯があって、共著で論文を書こうと提案していたところ、ゼロ除算そのものの研究の意味がないとして、論文と研究には参加せず、彼の結果は、齋藤のものとして良いとなった。彼らのあるグループ間では ゼロ除算は意味がないということで、意見が一致したというのである。これは数学が正しくても意味が無いという、見解の人たちが存在するという事実を述べている。アヴェイロ大学でもそのような意見であったので、アヴェイロ大学では、ゼロ除算は研究できない状況になっていた。それらの思想、感覚は、アリストテレスの世界観が宗教のように深くしみわたっていて、universe は不連続なはずがないという事である。ゼロ除算における強力な不連続性は受け入れられない、ゼロ除算はまるで、恐ろしい魔物をみるように 議論しても、発表してもならないと 数学教室の責任者たちに念を押された事実を 真実の記録として、書き留めて置きたい。
独立に証明された、Riva氏と高橋教授は、自分たちの定理の重要性を認識していなかったように感じられる。 他方、齋藤は、最初から今もなお その素晴らしさに驚嘆して感銘させられている。
以 上
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
ゼロで割る、ゼロ除算は 割り算を掛け算の逆と考えれば、不可能である事が簡単に証明されてしまう。しかるにゼロ除算は 自然な考え方でゼロになるということが発見されるや否や、ゼロ除算は除算の固有の意味から自明であるということと その一意性があっという間に証明されてしまった。ここでは創造性の実態、不思議な面に触れて、創造性の奇妙な観点をしっかり捉えて置きたい。― 背景の解説は 次を参照:
ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
道脇裕・愛羽 父・娘 氏たちの意見は 割り算を除算の固有の意味から考えて、自明であると結論づけたものであるが、この文脈を追記すると:
そこで、100/0 を上記の精神で考えてみよう。 まず、
100 - 0 = 100,
であるが、0を引いても 100は減少しないから、何も引いたことにはならず、引いた回数(商)は、ゼロと解釈するのが自然ではないだろうか (ここはもちろん数学的に厳格に そう定義できる)。ゼロで割るとは、100を分けないこと、よって、分けられた数もない、ゼロであると考えられる。 この意味で、分数を定義すれば、分数の意味で、100割るゼロはゼロ、すなわち、100/0=0である。
さらに、
ところで、 除算を引き算の繰り返しで計算する方法自身は、除算の有効な計算法がなかったので、実際は日本ばかりではなく、中世ヨーロッパでも計算は引き算の繰り返しで計算していたばかりか、現在でも計算機で計算する方法になっている(吉田洋一;零の発見、岩波新書、34-43)。
さらに、道脇裕氏が、2014.12.14日付け文書で、上記除算の意味を複素数の場合にも拡張して ゼロ除算z/0=0を導いているのは、新しい結果であると考えられる。
吉田洋一氏は、上記著書で、ゼロ除算の方法を詳しく書かれているにも関わらず、ゼロ除算はゼロであるとの 結果に至っていない。道脇氏が見破ったセロ除算が出ていない。 吉田氏が書かれているように、中世ヨーロッパ、アジアでも、計算機内の計算法でも広範に、使われている方法の 小さな、小さな発想が出ていない。世界は広く、四則演算を習い、使用している人は それこそ膨大な人口なのに 皆道脇氏の発想が出ていないということは 何を意味するであろうか。 もちろん、数学や物理学の天才たちを回想しても 驚くべきことである。 しかも, 物理学には、ゼロ除算が自然に現れる公式が沢山存在して、ゼロ除算は 物理学の 不明な、曖昧な点であったという事実さえ存在していた。世間でもどうしてゼロで割れないかの疑問は 繰り返し問われてきていた、問われている。
この小さな、小さな発想の1歩が出なかった理由は、除算は乗算の逆であって、ゼロ除算は不可能であるという、数学の定説が ゆり動く事がなかったという、厳然とした事実ではないだろうか? 数学的に不可能性であることが証明されていることは、あたかも 絶対的な真理のように響いてきたのではないだろうか。― しかしながら、人類は非ユークリッド幾何学の出現で、数学的な真実は変わりうることを学んでいるはずである。 実際、平行線が無数に存在したり、全然、存在しない幾何学が現れ、現在それらが活用されている。
道脇愛羽さん(当時6歳)は 四則演算の定義、基本だけを知っていて、自由な発想の持ち主であるがゆえに、得られた感覚とも言えるが、無限が好きだとか、一般角の三等分を考えるなど、相当な数覚の持ち主のように感じられる。道脇裕氏は、自由人で、相当な整数論を独力で展開するなど多彩な才能の持ち主であるが、除算の理解にも深く、複素数でも除算の考えができるなど、全く新しい結果を得ていると考える。数学の定説など ものともしない、世界を観ているのが良く分かる。それらの故にこの偉大な1歩を踏み出すことができたと考えられる。
この1歩は偉大であり、小学校以上の割り算の考えを改め、ゼロ除算を 世界の常識にすべきであると考える。
我々は、この発見の契機から、人間の創造性について沢山の事を学べるのではないだろうか。
以 上
0 件のコメント:
コメントを投稿