2018年5月8日火曜日

ホーキング博士最後の論文 「多元的宇宙」規模縮小した理論提唱

ホーキング博士最後の論文 「多元的宇宙」規模縮小した理論提唱

【5月7日 AFP】英国の宇宙物理学者、故スティーブン・ホーキング(Stephen Hawking)博士の死後に発表された新たな論文によって、天文学者らを大きく二分してきた問いについての議論が再燃している。それは、私たちが今いるこの宇宙は拡張し続ける無限の「多元的宇宙」のうちの一つにすぎないのではないかという問いだ。
 論文はベルギーのルーベンカトリック大学(KU Leuven university)のトマス・ヘルトーク(Thomas Hertog)氏と共同執筆され、博士が亡くなった3月14日以前に提出されたもので、今週「Journal of High Energy Physics」に掲載された。
 ある学派によると、宇宙はビッグバン(Big Bang)の後、爆発的に拡張し始めた。この拡張あるいは「膨張」は大部分で永遠に続いていくが、この動きが停止する所もいくつか存在する。私たち人類が今いるような宇宙は、こうした場所につくられている。
 多くの科学者らは多元的宇宙論を嫌い、ホーキング博士もその一人だった。博士は昨年行われたインタビューで、「私は、多元的宇宙のファンであったことは一度もない」と語っていた。だが、天文学に対する最後の貢献となった今回の論文では、この理論をはねつけるのではなく、その数を大幅に縮小した理論を提唱している。
 ホーキング博士が在籍していた英ケンブリッジ大学(Cambridge University)は、博士が同論文について「私たちは単一宇宙にまで縮小したわけではない」が、「私たちの研究結果は、多元的宇宙の著しい縮小、すなわち、存在するかもしれない宇宙の数は(無数ではなく、それより)はるかに小規模であることを示している」と語ったとしている。
 ヘルトーク氏はAFPの取材に対し、新たな仮説は「ひも理論、弦理論」として知られる理論物理学の一つの考えに基づいたものであるとし、宇宙には多くの宇宙があるとしても、その数は「明らかに有限」だと結論付けていると語った。(c)AFP/Mariette le Roux and Laurence Coustal
 
とても興味深く読みました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所


再生核研究所声明 427(2018.5.8): 神の数式、神の意志 そしてゼロ除算

NHKスペシャル 神の数式番組を繰り返し拝見して感銘を受けている。素晴らしい映像ばかりではなく、内容の的確さ、正確さに、ただただ驚嘆している。素晴らしい。
ある物理学の本質的な流れを理解し易く表現していて、物理学の着実な発展が良く分かる。
原爆を作ったり、素粒子を追求していたり、宇宙の生成を研究したり、物理学者はまるで、現代の神官のように感じられる。素粒子の世界と宇宙を記述するアインシュタインの方程式を融合させるなど、正に神の数式と呼ぶにふさわしいものと考えられる。流れを拝見すると物理学は適切な方向で着実に進化していると感じられる。神の数式に近づいているのに 野蛮なことを繰り返している国際政治社会には残念な気持ちが湧いて来る。ロシアの天才物理学者の終末などあまりにも酷いのではないだろうか。世界史の進化を願わざるを得ない。
アインシュタインの相対性理論は世界観の変更をもたらしたが、それに比べられるオイラーの公式は数学全般に大きな変革をもたらした: 

With this estimation, we stated that the Euler formula
$$
e^{\pi i} = -1
$$
is the best result in mathematics in details in: No.81, May 2012 (pdf 432kb)
余りにも神秘的な数式のために、アインシュタインの公式 E= mc^2 と並べて考えられる 神の意志 が感じられるだろう。 ところで、素粒子を記述する方程式とアインシュタインの方程式を融合したら、 至る所に1/0 が現れて 至る所無限大が現れて計算できないと繰り返して述べられている。しかしながら、数学は既に進化して、1/0=0 で無限大は 実はゼロだった。 驚嘆すべき世界が現れた。しかしながら、数学でも依然として、rがゼロに近づくと 無限大に発散する事実が有るので、弦の理論は否定できず、問題が存在する。さらに、形式的に発散している場合でも、ゼロ除算算法で、有限値を与え、特異点でも微分方程式を満たすという新しい概念が現れ、局面が拓かれたので、数学者ばかりではなく、物理学者の注意を喚起して置きたい。
物理学者は、素粒子の世界と巨大宇宙空間の方程式を融合させて神の方程式を目指して研究を進めている。数学者はユークリッド以来現れたゼロ除算1/0と空間の新しい構造の中から、神の意志を追求して 新しい世界の究明に乗り出して欲しいと願っている。いみじくもゼロ除算は、ゼロと無限大の関係を述べていて、素粒子と宇宙論の類似を思わせる。
人の生きるは、真智への愛にある、すなわち、事実を知りたい、本当のことを知りたい、高級に言えば 神の意志 を知りたいということである。 そこで、我々のゼロ除算についての考えは真実か否か、広く内外の関係者に意見を求めている。関係情報はどんどん公開している。 ゼロ除算の研究状況は、
数学基礎学力研究会 サイトで解説が続けられている:http://www.mirun.sctv.jp/~suugaku/
また、ohttp://okmr.yamatoblog.net/ に 関連情報がある。
以 上
 
 
再生核研究所声明 408(2018.1.25):  数学を越えて ― 価値あるものとは

(ゼロ除算の研究に専念してきた物理学者と興味深い議論をしてきた。 それで気づかされた視点である。)
数学の本質論:
No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf
から、最近でも数学についていろいろな意見を表明してきている:
再生核研究所声明 398(2017.11.15): 数学の本質論と社会への影響の観点から - ゼロ除算算法の出現の視点から
再生核研究所声明 399(2017.11.16): 数学芸術 分野の創造の提案 - 数学の社会性と楽しみの観点から
再生核研究所声明 400(2017.11.17): 数学の研究における喜びと嫌な思い
再生核研究所声明 401(2017.11.18): 数学の全体、姿、生命力
再生核研究所声明 402(2017.11.19): 研究進めるべきか否か - 数学の発展
ゼロ除算の研究者は我々の研究グループを除いて世界で大体15名くらいいて、彼らの研究は今でも混乱していると言える。大きく分けると数学の基礎が無くて、論理が通じず、混乱している数学の愛好者たち、ゼロ除算不可能性に満足できず ― この元は多くは計算機がゼロ除算に会うと計算機障害を起こすが、それを回避することに動機がある ― 公理論的に独自の数学を建設している者、そして物理学上の立場からゼロ除算の研究に取り組んでいる者である。この最後のグループとの相当な議論をして感じたことを述べたい。― 尚、我々の研究グループは、内外大体8名である。ゼロ除算は本質的に解明され、基本は既に確定していると考えている。― 我々の存念を繰り返し内外に広く送っているが、上記グループからも批判が寄せられず、我々の主張を相当理解され、認めてきていると判断している。
特に二人の研究者はゼロ除算と物理学の関係を 人生をかけて、研究しているように見えるほど、研究活動が活発である。ところが繰り返し確認しているが、この二人はゼロ除算の定義、0/0の定義は何かとの質問に 定義はないと繰り返し言明している。それで数学者の立場からは議論はできず、論理的に考えられない状況になってしまう。論理的に矛盾であると言っても自分たちの立場を変えようとしないのである。事実は我々の結果に反して0/0=1 であると物理的な裏付けで主張され、数学がおかしいという考えを抱いていることが分かる。物理的な事実は数学を超えていると考えていることが分かる。多くの数学者はこの辺で交流を打ち切るのが 普通ではないだろうか。- 実際、彼らの理論は数学界でも物理学界でも受け入れられていないようである。
そこで、数学についてそのような視点から考えさせられることがある。いろいろな理論が提起されて、いろいろな結果が導かれる。何をもってそれらを評価し、価値あるものと判断できるかという視点である。公理系や論理も、仮定もいろいろ存在して、様々な研究成果が得られている。ここで、評価をどのようにするかである。ある純粋数学者は人類の名誉のためにこの問題を解いたと表現するが、他の人はそんなことは分からず、また興味も関心もないという。興味、関心の前に 結果そのものが分からないは 今や純粋数学ではほとんどであると言えよう。
数学とは何かを論じ、数学とは関係の集まりであるとして、良い結果とは、
基本的であること、
美しく感動させること、
そして 
世の中に良い影響を与えるものとして、
オイラーの公式が数学上の最高の結果であると表現した:
No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf
T. M. Rassias, Editor, Nonlinear Mathematical   Analysis and Applications, HadronicPress,Palm Harbor,FL34682-1577,USA:ISBN1-57485-044-X,1998,   pp.223–234: Nonlinear transforms and analyticity of functions, Saburou Saitoh.

それで、結局は世界史に貢献できる結果こそが良い結果であると言えよう。
上記物理学者に 理論を越えてそれでは貴方の研究成果の効用、価値はどこにあるのかと 問う。すると反作用で、私たちの研究成果の効用、意義はこうであると応えなければならない。言わば、その証拠を分かり易く、明示する必要がある。- この精神で ゼロ除算の新奇な結果の位置づけ、重要性を説明するために 具体的な証拠を沢山探す必要性に迫られた。
数学者は、数学の自由な精神で自由に研究を進めても良いが、評価を求めるためには得た成果の意義、意味、価値を具体的に示すことが要求されると言える。
そこで、ゼロ除算の重要性を示すために多角的な取り組みを始め、いろいろな表現を考え、意見表明を行っている。数学者の名誉のために、人類の名誉ためにである。― 実際、数学には恥ずかしい初歩的な欠陥があると主張している。さらに、人はゼロ除算の真相から、人間の愚かさを自覚することが出来るから、人間の精神の開放に ゼロ除算は大きく貢献できると考えている。
以 上
 
 
再生核研究所声明 424(2018.3.29):  レオナルド・ダ・ヴィンチとゼロ除算

次のダ・ヴィンチの言葉を発見して、驚かされた:

ダ・ヴィンチの名言 格言|無こそ最も素晴らしい存在

我々の周りにある偉大なことの中でも、無の存在が最も素晴らしい。その基本は時間的には過去と未来の間にあり、現在の何ものをも所有しないというところにある。この無は、全体に等しい部分、部分に等しい全体を持つ。分割できないものと割り切ることができるし、割っても掛けても、足しても引いても、同じ量になるのだ。
レオナルド・ダ・ヴィンチ。ルネッサンス期を代表する芸術家、画家、彫刻家、建築技師、設計士、兵器開発者、科学者、哲学者、解剖学者、動物学者、ファッションデザイナーその他広い分野で活躍し「万能の人(uomo universale:ウォモ・ウニヴェルサーレ)」と称えられる人物
そもそも西欧諸国が、アリストテレス以来、無や真空、ゼロを嫌い、ゼロの西欧諸国への導入は相当に遅れ、西欧へのアラビヤ数字の導入は レオナルド・フィボナッチ(1179年頃~1250年頃)によるとされているから、その遅れの大きさに驚かされる:

フィボナッチはイタリアのピサの数学者です。正確には「レオナルド・フィリオ・ボナッチ」といいますが、これがなまって「フィボナッチ」と呼ばれるようになったとされています。
彼は少年時代に父親について現在のアルジェリアに渡り、そこでアラビア数字を学びました。当時の神聖ローマ皇帝・フリードリヒ2世は科学と数学を重んじていて、フィボナッチは宮殿に呼ばれ皇帝にも謁見しました。後にはピサ共和国から表彰もされました。
ローマ数字では「I, II, III, X, XV」のように文字を並べて記すため大きな数を扱うのには不便でした。対してアラビア数字はローマ数字に比べてとても分かりやすく、効率的で便利だったのです。そこでフィボナッチはアラビア数字を「算術の書」という書物にまとめ、母国に紹介しました。アラビア数字では0から9までの数字と位取り記数法が使われていますが、計算に使うにはとても便利だったために、ヨーロッパで広く受け入れられることになりました。(歴史上の数学者たちレオナルド・フィボナッチ
historicalmathematicians.blogspot.com/2012/03/blog-post.html Traduzir esta página 02/03/2012 -)
ゼロや無に対する恐怖心、嫌疑観は現在でも欧米諸国の自然な心情と考えられる。ところが上記ダ・ヴィンチの言葉は 如何であろう。無について好ましいものとして真正面から捉えていることが分かる。ゼロ除算の研究をここ4年間して来て、驚嘆すべきこととして驚かされた。ゼロの意味、ゼロ除算の心を知っていたかのような言明である。
まず、上記で、無を、時間的に未来と過去の間に存在すると言っているので、無とはゼロのことであると解釈できる。ゼロとの捉え方は四則演算を考えているので、その解釈の適切性を述べている。足しても引いても変わらない。これはゼロの本質ではないか。さらに、凄いこと、掛けても割っても、ゼロと言っていると解釈でき、それはゼロ除算の最近の発見を意味している:  0/1 =1/0=0。- ゼロ除算を感覚的に捉えていたと解釈できる。ところが更に、凄いことを述べている。
この無は、全体に等しい部分、部分に等しい全体を持つ。これはゼロ除算の著書DIVISION BY ZERO CALCULUS(原案)に真正面から書いている我々の得た、達したゼロに対する認識そのものである:
{\bf Fruitful world}\index{fruitful world}
\medskip

For example, in very and very general partial differential equations, if the coefficients or terms are zero, we have some simple differential equations and the extreme case is all the terms are zero; that is, we have trivial equations $0=0$; then its solution is zero. When we see the converse, we see that the zero world is a fruitful one and it means some vanishing world. Recall \index{Yamane phenomena}Yamane phenomena, the vanishing result is very simple zero, however, it is the result from some fruitful world. Sometimes, zero means void or nothing world, however, it will show some changes as in the Yamane phenomena.
\medskip

{\bf From $0$ to $0$; $0$ means all and all are $0$}
\medskip

As we see from our life figure, a story starts from the zero and ends to the zero. This will mean that $0$ means all and all are $0$, in a sense. The zero is a mother of all.
\medskip

その意味は深い。我々はゼロの意味をいろいろと捉え考え、ゼロとはさらに 基準を表すとか、不可能性を示すとか、無限遠点の反映であるとか、ゼロの2重性とかを述べている。ゼロと無限の関係をも述べている。ダ・ヴィンチの鋭い世界観に対する境地に驚嘆している。
以 上
*057 Pinelas,S./Caraballo,T./Kloeden,P./Graef,J.(eds.): Differential and Difference Equations with Applications: ICDDEA, Amadora, 2017. (Springer Proceedings in Mathematics and Statistics, Vol. 230) May 2018 587 pp. 
 
再生核研究所声明 404(2017.12.30):  
ゼロ除算の現状 ― 総合的な印象

ゼロ除算の著書を出版すべく執筆をしている。700件を超えるメモ、記録を参照しながら一応の素案、原案を152ページに纏めた。ゼロ除算発見4周年を目前にしている。そこで、ふと思い湧く印象について述べて置きたい。
ゼロ除算発見 4周年 目前で、数理論の内容は初歩数学であるから、全体が何もかも当たり前に思え、700件を超える知見も当たり前で、著書は簡潔に纏め切れると感じてきた。そのような折り、学位論文で提起、最初の著書で真正面から取り上げ、論じ、未解決の問題と述べてきた超難問が解けたとの論文が 北京大学 のQi'an Guan氏から送られてきた。秀才の関係者も解けず、関与する数学者ももはや世界に存在せず、従ってもはや300年以上も もう解決できないだろうと考えてきた。最初の著書出版1988年からでもちょうど30年を迎えている。全く予想できない発想、深い手段、複雑な構造、このような全く新奇な数学に驚嘆すると共に 北京大学の基礎の深さ、底力の大きさに驚嘆させられ、高貴な独創性、創造性、発想に感銘を受けている。 このような衝撃は友人の山田陽氏の研究などにも見られたが稀なる経験である。
この衝撃的な深い研究、高貴な理論に感銘している折りに、自らの著書、論文の位置づけについて思いを巡らすこととなった。
まずは、ゼロ除算の論理が、ゼロ除算の拓いた世界が当たり前と思える内容であるが、内容がアリストテレス、ユークリッド以来の世界観を変えるものである。 数学ではゼロ除算は未定義、不定性、不可能性が世の定説であるが、天才たちのいろいろな関与、昨年でも2編の大論文が発表されている。 ゼロ除算の永い、神秘的な歴史を回想すると、内容の意味の大きさと、理論の簡素さの大きな隔たりに、驚嘆させられる。極めて簡単な発見が、世界観の変更を要求している:
無限遠点はゼロで表される。すべての直線は原点を通り、ユークリッドの公理は成り立たない。 y軸の勾配はゼロ、\tan(\pi/2) =0であること。解析関数は孤立特異点で固有な値を取り、それが 重要な意味を持つこと。ゼロ除算の影響は初歩数学全般におよび、現代数学には大きな欠落、欠陥があるから、全般的に補充し、完全化されるべきである。極めて簡単な数学が、発見されて大きな影響を広く与える事実である。この差の大きさを 現代数学の目も眩むような高度さ、深さ、徹底した論理の厳格さの視点から思うとき、誠に奇妙な事件に思われて仕方がない。 余りにも大きな新規な結果に、そんなものは受け入れられないとは 多く人の印象であり、論文を相当発表、学会や国際会議でも講演を行っているにも関わらず、4年近く経っても公認の形にはなっていないようである。世間では新しい、基本的な数学が知られていないと言える。―― 我々の空間の認識がアリストテレス、ユークリッド以来 間違っているにも関わらずである。
ゼロ除算 0/0=0は 算術の創始者、ゼロの発見者 Brahmagupta (598 -668 ?) によって定義されていたにも関わらず、それは間違いであるとして1300年を超えて続いており、さらに、新たな説、論文が出版されている実におかしな状況にある。しかるに我々は ゼロ除算は既に当たり前であるとして、沢山の証拠を掲げて解説、説得を続けているが、理解は着実に進んでいるにも関わらず、理解は深くはなく、遅々として夜明け前のぼんやりしているような時代であると言える。数学者は、真実に忠実でなければならないのに、数学の研究では、論理には、感情や私情、予断、思い込みを入れてはならないのに、それが、数学の精神であるはずなのに かえって、数学者が予断と偏見、私情に囚われている状況が皮肉にも良く見える。 それは、ゼロ除算の理解が、素人の方の方が理解しやすい状況に現れている。 ― 数学は 絶対的に 厳格な論理でできているはずであるから、基礎が揺るぐはずがないとの信仰、信念を有しているためであろう。しかしながら、人間精神の開放と自由を求めて、非ユークリッド幾何学の出現から、人は大いに学ぶべきではないだろうか。 絶えず、人は何でも疑い、  と 問うべきである。 ― 人間存在の意義は 真智への愛にある
今回の著書原案では一通り全体を纏めてみたが、全体の様子は、まずゼロ除算の導入をきちんと行い、論理をしっかりさせ、確立させ、歴史的な背景を述べ、ゼロ除算算法の考え方とその有効性を示す具体例を沢山述べた。それで、今まで、考えなかった世界自然な大きな世界が良く見える様になるだろう。この時、我々の数学が、空間の認識が、如何に不完全なものであったかを 明白に理解されるだろう。
ゼロ除算のこの著書は 第1歩であり、いわば初歩入門書である。 本格的なゼロ除算の研究はここから始まると考えたい。Qi'an Guan氏のような数学者や、物理学者が現れて、ゼロ除算の世界は、面目を一新させ、目も眩むほどに発展させるだろうことを 信じて疑わない。
                                   以 上


再生核研究所声明 405(2017.12.31):  ゼロ除算が拓いた幾何学の現象 ― 堪らなく楽しい新奇な現象 - デカルトの円定理から

図と式の表現が表しにくいので 簡単に参照されるサイトhttps://arxiv.org/abs/1711.04961
を挙げて その中の図と式を参照して頂いて、ゼロ除算が如何に面白いかを解説したい。
まず、始めにデカルトの円定理と呼ばれる美しい定理を参照して下さい。3つの円が外接するときに、それらに内接したり、外接する円の半径の間の関係を確立した定理です。
式は美しいのですが、表現で4つの半径は、完全に対称になっていることに気づけばさらに 美しさを深く理解できます。
論文の発想は、そもそも、点や直線は円の特別な場合と見なせるという数学を想起して、デカルトの円定理で述べた基の3つの円を 点や直線に置き換えた場合にも成り立つかと問題にしました。 点は半径ゼロの円ですが、直線も半径ゼロの円だということはゼロ除算の結果導かれた発見です。すると、デカルトの円定理の式で、1/0  が出てきますが、それらはゼロと解釈すれば 良いとなります。それで、2つが円で、もう一つが共通接線である場合を考えると、図1-2のようですが、きれいに成り立っていることが分かります。 この辺の定理、事実は和算の得意とする分野で、デカルトの円定理も含めて和算でも広く知られていたということです。3つの円が、点や直線になった場合をすべて考えてみて何時でも成り立てば、デカルトの円定理は 一層美しいと言えます。 あらゆる場合を考えるのですが、2つが円で、一つが点の場合、それらに接する円は存在しないようですので、その場合デカルトの円定理は成り立たないようにみえます。
そこで、点では成り立たないので、小さな円の場合を考えて、その円を点にした場合にどうなるかを考えてみました。どんな小さな円でもデカルトの円定理は成り立っていますから、その小さな円の半径がゼロに近づいた場合を 考えてみるとどうなるかと考えたくなります。
数学的に厳格に議論するために、3つの円と内接円(外接円)をきちんと方程式で書いて議論しました。 円を点にするとき、 円の表現は孤立特異点を有していて、そこでは考えられないというのが 現代数学です。 ゼロ分の式はゼロのところで考えられないからです。 例えば、定理7の円の方程式で、z = 1,-1 の場合が考えられる。そこで、意味のある図形が出てくる。 ゼロ除算算法では孤立特異点で有限確定値を与えることができますので、今まで考えられなかった特異点で考えみました。― 無限の彼方が、特異点に成る場合も多い。その結果、驚嘆すべきことが起きていることが分かりました。(この辺の記述は厳密な表現より情念に思いを入れました)。
その特異点から、点円原点と、赤い円と青い円が出て来ることが分かりました。点がこれらの3つに分かれて出てきたという実に面白い現象です。 原点の場合にはデカルトの定理が成り立ちませんが、赤い円では、何とデカルトの円定理が成り立っていることが、ゼロ除算算法での計算の結果から確認できます。 青い円は美しい状況に置かれた円ですが、それは点に近づけた円が、突然、元の2つの円に外接する、しかもちょうどそれらの円を直径にする円に変形したと解釈すると、ちょうど内接する円が 緑の円で、デカルトの定理が成り立っているという、驚嘆すべき現象です。
点に成って定理が成り立たない場面で、点が突然変異を起こして定理をそのまま成り立たせている現象が現れたと発想すると、この現象は世の一般的な現象における新規な現象として注目すべきではないでしょうか。 見かけ上成り立たない場合、そこが変形して成り立たせる世界が存在する。 ― ものは燃焼で変形する、変形以前のあるものは変形してもそのまま、引き継がれている。意味深長では ないだろうか。― 山根現象を想起して下さい。 ― これは、運動エネルギーが一定であったものが ある時、物質は突然消えて、物質は消えて運動エネルギーが熱エネルギーに変化する現象を表しています。
赤い円は、美しいので、その分野の有名なバーコフの円と呼ばれる円ですが、2つの円に直交していますが、点に近づいていくとき、 円は接していたのですが、出てきた円は接するのではなくて、直交でしょうか。 実に面白いことは ゼロ除算が発見した典型的な結果として、y軸の勾配はゼロ、\tan(\pi/2) =0 ですから、バーコフの円は2つの円に接しているということを述べていますから、 堪らなく楽しいと言えます。― 直交は接していると解釈できるという新発見です。 緑の円は美しく3つの円に接しています。
論文では、あらゆる場合を考えたと述べていますので、3つの円が3つの点でも、3本の直線の場合も考えて、デカルトの定理は成り立っていると述べていますので、さらに面白いです。それには、ゼロの意味を考えてゼロとは何かを発見する必要が有ります。
以 上                                           
2017.12.29.14:17 アーカイブ審査の上、公表された。超古典的な考えに間違いがあると書いてあるので、担当者は慎重に扱った。http://arxiv.org/abs/1712.09467

0 件のコメント:

コメントを投稿