2017年10月25日水曜日

1+2+3が24になる? iOS11の電卓、実用に問題あり

1+2+3が24になる? iOS11の電卓、実用に問題あり

ゆっくり入力しないとおかしな数字に。

 iOS11の電卓に、実用に問題のある動作が発覚しました。「1+2+3」という極めて単純な計算が、「24」というおかしな答えになってしまうというものです。正しくは6のはずですが、なぜこのような結果になってしまうのでしょうか。
 
実際に試してみたところ。最後は「+」でも「=」でも同じ結果(編集部撮影)

iOS11 電卓 不具合1+

iOS11 電卓 不具合2+

iOS11 電卓 不具合3(この時点でおかしい)

iOS11 電卓 不具合=24。間違った答えが帰ってきてしまった
 
 編集部で試してみたところ、かなりゆっくり入力すると「6」と正しい答えを返してくれますが、ちょっと早めに入力しただけで「24」になってしまいます。どうやら四則演算ボタンの2回めの入力の反応がすこぶる悪い(1度押して白くなっていたボタンが元に戻るまで操作を受け付けない)ようで、例えば「123+123+123」のように桁数の多い計算だと「+」を押す時間に猶予が生まれるため、ある程度速めに入力しても正しい答えを返してくれました。ただし、かなり速く入力すると、やはりおかしな答えが返ってきてしまいます。
 他の「-」「×」「÷」ボタンも同様で、2回めの入力が早いと無視されてしまいます。ただし、例えば「3×2+1」のように、別の四則演算ボタンであれば早く入力しても正しく認識してくれました。
 普通に使う程度の速さの入力でもこの現象が起きてしまうため、実用に問題があると行っても過言ではありません。早期にアップデートでの修正が望まれます。http://nlab.itmedia.co.jp/nl/articles/1710/25/news086.html

とても興味深く読みました:AbemaTV星カラフル足ピンク星上足黄足緑星下


再生核研究所声明3532017.2.2) ゼロ除算 記念日
                                                                                        
2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは

再生核研究所声明 148(2014.2.12): 100/0=0,  0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志

で、最新のは

Announcement 352 (2017.2.2):  On the third birthday of the division by zero z/0=0 

である。
アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。
心すべき要点を纏めて置きたい。

1)     ゼロの明確な発見と算術の確立者Brahmagupta (598 - 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。
2)     予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。
3)     ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。
4)     この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。
5)     いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。
6)     ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。
以 上

追記:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:

Division by Zero z/0 = 0 in Euclidean Spaces
Hiroshi Michiwaki, Hiroshi Okumura and Saburou Saitoh
International Journal of Mathematics and Computation Vol. 28(2017); Issue  1, 2017), 1-16. 
http://www.scirp.org/journal/alamt   http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html

http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf


再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告

http://ameblo.jp/syoshinoris/theme-10006253398.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12276045402.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12263708422.html

1/0=0、0/0=0、z/0=0
http://ameblo.jp/syoshinoris/entry-12272721615.html

再生核研究所声明 375 (2017.7.21):
ブラックホール、ゼロ除算、宇宙論

本年はブラックホール命名50周年とされていたが、最近、wikipedia で下記のように修正されていた:
名称[編集]
"black hole"という呼び名が定着するまでは、崩壊した星を意味する"collapsar"[1](コラプサー)などと呼ばれていた。光すら脱け出せない縮退星に対して "black hole" という言葉が用いられた最も古い印刷物は、ジャーナリストのアン・ユーイング (Ann Ewing) が1964年1月18日の Science News-Letter の "'Black holes' in space" と題するアメリカ科学振興協会の会合を紹介する記事の中で用いたものである[2][3][4]。一般には、アメリカ物理学者ジョン・ホイーラーが1967年に "black hole" という名称を初めて用いたとされるが[5]、実際にはその年にニューヨークで行われた会議中で聴衆の一人が洩らした言葉をホイーラーが採用して広めたものであり[3]、またホイーラー自身は "black hole" という言葉の考案者であると主張したことはない[3]https://ja.wikipedia.org/wiki/%E3%83%96%E3%83%A9%E3%83%83%E3%82%AF%E3%83%9B%E3%83%BC%E3%83%AB

世界は広いから、情報が混乱することは よく起きる状況がある。ブラックホールの概念と密接な関係のあるゼロ除算の発見(2014.2.2)については、歴史的な混乱が生じないようにと 詳しい経緯、解説、論文、公表過程など記録するように配慮してきた。
ゼロ除算は簡単で自明であると初期から述べてきたが、問題はそこから生じるゼロ除算算法とその応用であると述べている。しかし、その第1歩で議論は様々でゼロ除算自身についていろいろな説が存在して、ゼロ除算は現在も全体的に混乱していると言える。インターネットなどで参照出来る膨大な情報は、我々の観点では不適当なものばかりであると言える。もちろん学術界ではゼロ除算発見後3年を経過しているものの、古い固定観念に囚われていて、新しい発見は未だ認知されているとは言えない。最近国際会議でも現代数学を破壊するので、認められない等の意見が表明された(再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告)。そこで、初等数学から、500件を超えるゼロ除算の証拠、効用の事実を示して、ゼロ除算は確定していること、ゼロ除算算法の重要性を主張し、基本的な世界を示している。
ゼロ除算について、膨大な歴史、文献は、ゼロ除算が神秘的なこととして、扱われ、それはアインシュタインの言葉に象徴される:

Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (Gamow, G., My World Line (Viking, New York). p 44, 1970).

ところが結果は、実に簡明であった:

The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world

しかしながら、ゼロ及びゼロ除算は、結果自体は 驚く程単純であったが、神秘的な新たな世界を覗かせ、ゼロ及びゼロ除算は一層神秘的な対象であることが顕になってきた。ゼロのいろいろな意味も分かってきた。 無限遠点における強力な飛び、ワープ現象とゼロと無限の不思議な関係である。アリストテレス、ユークリッド以来の 空間の認識を変える事件をもたらしている。 ゼロ除算の結果は、数理論ばかりではなく、世界観の変更を要求している。 端的に表現してみよう。 これは宇宙の生成、消滅の様、人生の様をも表しているようである。 点が球としてどんどん大きくなり、球面は限りなく大きくなって行く。 どこまで大きくなっていくかは、 分からない。しかしながら、ゼロ除算はあるところで突然半径はゼロになり、最初の点に帰するというのである。 ゼロから始まってゼロに帰する。 ―― それは人生の様のようではないだろうか。物心なしに始まった人生、経験や知識はどんどん広がって行くが、突然、死によって元に戻る。 人生とはそのようなものではないだろうか。 はじめも終わりも、 途中も分からない。 多くの世の現象はそのようで、 何かが始まり、 どんどん進み、そして、戻る。 例えばソロバンでは、願いましては で計算を始め、最後はご破産で願いましては、で終了する。 我々の宇宙も淀みに浮かぶ泡沫のようなもので、できては壊れ、できては壊れる現象を繰り返しているのではないだろうか。泡沫の上の小さな存在の人間は結局、何も分からず、われ思うゆえにわれあり と自己の存在を確かめる程の能力しか無い存在であると言える。 始めと終わり、過程も ようとして分からない。

ブラックホールとゼロ除算、ゼロ除算の発見とその後の数学の発展を眺めていて、そのような宇宙観、人生観がひとりでに湧いてきて、奇妙に納得のいく気持ちになっている。

以 上


再生核研究所声明316(2016.08.19) ゼロ除算における誤解

(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)
                                                     
6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。と述べ、大きな数学の改革を提案している:
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

以 上

再生核研究所声明198(2015.1.14) 計算機と人間の違い、そしてそれらの愚かさについて

まず、簡単な例として、割り算、除算の考えを振り返ろう:

声明は一般向きであるから、本質を分かり易く説明しよう。 そのため、ゼロ以上の数の世界で考え、まず、100/2を次のように考えよう:
100-2-2-2-,...,-2.
ここで、2 を何回引けるか(除けるか)と考え、いまは 50 回引いてゼロになるから分数の商は50である。
次に 3/2 を考えよう。まず、
3 - 2 = 1
で、余り1である。そこで、余り1を10倍して、 同様に
10-2-2-2-2-2=0
であるから、10/2=5 となり
3/2 =1+0.5= 1.5
とする。3を2つに分ければ、1.5である。
これは筆算で割り算を行うことを 減法の繰り返しで考える方法を示している。
ところで、 除算を引き算の繰り返しで計算する方法は、除算の有効な計算法がなかったので、実際は日本ばかりではなく、中世ヨーロッパでも計算は引き算の繰り返しで計算していたばかりか、現在でも計算機で計算する方法になっていると言う(吉田洋一;零の発見、岩波新書、34-43)。
計算機は、上記のように 割り算を引き算の繰り返しで、計算して、何回引けるかで商を計算すると言う。 計算機には、予想や感情、勘が働かないから、機械的に行う必要があり、このような手順、アルゴリズムが必要であると考えられる。 これは計算機の本質的な原理ではないだろうか。
そこで、人間は、ここでどのように行うであろうか。 100/2 の場合は、2掛ける何とかで100に近いものでと考え 大抵50は簡単に求まるのでは? 3/2も 3の半分で1.5くらいは直ぐに出るが、 2掛ける1で2、 余り1で、 次は10割る2で 5そこで、1.5と直ぐに求まるのではないだろうか。
人間は筆算で割り算を行うとき、上記で何回引けるかとは 発想せず、何回を掛け算で、感覚的に何倍入っているか、何倍引けるか、と考えるだろう。この人間の発想は教育によるものか、割り算に対して、逆演算の掛け算の学習効果を活かすように 相当にひとりでに学習するのかは極めて面白い点ではないだろうか。この発想には掛け算についての相当な経験と勘を有していなければ、有効ではない。
この簡単な計算の方法の中に、人間の考え方と計算機の扱いの本質的な違いが現れていると考える。 人間の方法には、逆の考え、すなわち積の考えや、勘、経験、感情が働いて、作業を進める点である。 計算機には柔軟な対応はできず、機械的にアルゴリズムを実行する他はない。 しかしながら、 計算機が使われた、あるいは用意された情報などを蓄積して、どんどんその意味における経験を豊かにして、求める作業を効率化しているのは 広く見られる。 その進め方は、対象、問題によっていろいろなアルゴリズムで 具体的には 複雑であるが、しかし、自動的に確定するように、機械的に定まるようになっていると考えられる ― 厳密に言うと そうではない考えもできる、すなわち、ランダムないわゆる 乱数を用いるアルゴリズムなどはそうとは言えない面もある ― グーグル検索など時間と共に変化しているが、自動的に進むシステムが構築されていると考えられる。 それで、蓄積される情報量が人間の器、能力を超えて、計算機は 人間を遥かに超え、凌ぐデータを扱うことが可能である事から、そのような学習能力は、人間のある能力を凌ぐ可能性が高まって来ている。 将棋や碁などで プロの棋士を凌ぐほどになっているのは、良い例ではないだろうか。もちろん、この観点からも、いろいろな状況に対応するアルゴリズムの開発は、計算機の進化において 大きな人類の課題になるだろう。

他方、例えば、幼児の言葉の学習過程は 神秘的とも言えるもので、個々の単語やその意味を1つずつ学習するよりは 全体的に感覚的に自動的にさえ学習しているようで、学習効果が生命の活動のように柔軟に総合的に進むのが 人間の才能の特徴ではないだろうか。

さらに、いくら情報やデータを集めても、 人間が持っている創造性は 計算機には無理のように見える。 創造性や新しい考えは 無意識から突然湧いてくる場合が多く、 創造性は計算機には無理ではないだろうか。 そのことを意識したわけではないが、人間の尊厳さを 創造性に 纏めている:

再生核研究所声明181(2014.11.25) 人類の素晴らしさ ― 7つの視点

そこでも触れているが、信仰や芸術、感情などは生命に結び付く高度な存在で、科学も計算機もいまだ立ち入ることができない世界として、生命に対する尊厳さを確認したい。

しかしながら、他方、人間の驚くべき 愚かさにも自戒して置きたい:
発想の転換、考え方の変更が難しいということである。発想の転換が 天動説を地動説に変えるのが難しかった世界史の事件のように、また、非ユークリッド幾何学を受け入れるのが大変だったように、実は極めて難しい状況がある。人間が如何に予断と偏見に満ち、思い込んだら変えられない性(さが) が深いことを 絶えず心しておく必要がある: 例えば、ゼロ除算は 千年以上も、不可能であるという烙印のもとで、世界史上でも人類は囚われていたことを述べていると考えられる。世界史の盲点であったと言えるのではないだろうか。 ある時代からの 未来人は 人類が 愚かな争いを続けていた事と同じように、人類の愚かさの象徴 と記録するだろう。 数学では、加、減、そして、積は 何時でも自由にできた、しかしながら、ゼロで割れないという、例外が除法には存在したが、ゼロ除算の簡潔な導入によって例外なく除算もできるという、例外のない美しい世界が実現できた(再生核研究所声明180(2014.11.24) 人類の愚かさ― 7つの視点)。そこで、この弱点を克服する心得を次のように纏めている:
再生核研究所声明191(2014.12.26) 公理系、基本と人間
以 上


0 件のコメント:

コメントを投稿