2015年3月10日火曜日

Carolus Fridericus Gauss

Carolus Fridericus Gauss
2015年03月10日(火)
テーマ:数学
カール・フリードリヒ・ガウス
カール・フリードリヒ・ガウス
Christian Albrecht Jensen による肖像画
人物情報
生誕 1777年4月30日
神聖ローマ帝国の旗 神聖ローマ帝国 ブラウンシュヴァイク
死没 1855年2月23日(77歳)
Flag of Hanover 1837-1866.svg ハノーファー王国 ゲッティンゲン
居住 ハノーファー王国
国籍 ドイツ
出身校 ヘルムシュテット大学(英語版)
学問
研究分野 数学
物理
研究機関 ゲオルク・アウグスト大学ゲッティンゲン
博士課程
指導教員 Johann Friedrich Pfaff
他の指導教員 Johann Christian Martin Bartels
博士課程
指導学生 フリードリヒ・ヴィルヘルム・ベッセル
Christoph Gudermann
Christian Ludwig Gerling
リヒャルト・デーデキント
ヨハン・フランツ・エンケ
Johann Listing
ベルンハルト・リーマン
クリスチャン・H・F・ピーターズ
Moritz Cantor
他の指導学生 フェルディナント・ゴットホルト・マックス・アイゼンシュタイン
グスタフ・キルヒホフ
エルンスト・クンマー
ペーター・グスタフ・ディリクレ
アウグスト・フェルディナント・メビウス
ユリウス・ワイスバッハ
L. C. Schnürlein
主な業績 すべて見る
影響を
与えた人物 ソフィ・ジェルマン
主な受賞歴 コプリ・メダル (1838)
署名
プロジェクト:人物伝
テンプレートを表示
Disquisitiones Arithmeticae のタイトルページ
ヨハン・カール・フリードリヒ・ガウス(play /ˈɡaʊs/; ドイツ語: Gauß De-carlfriedrichgauss.ogg listen[ヘルプ/ファイル], ラテン語: Carolus Fridericus Gauss)(1777年4月30日 - 1855年2月23日)はドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である[1]。
目次 [非表示]
1 略歴と業績
1.1 生い立ちと幼年期
1.2 思想とおもな業績
1.3 生活と家庭、友人
1.4 晩年と墓所
2 ガウスの名が付いた法則、記号、単位等
3 著作
4 脚注
5 関連文献
6 外部リンク
§略歴と業績[編集]
1777年 - ブラウンシュヴァイクに生まれる
1792年 - 素数定理の成立を予想
1795年 - 最小二乗法発見
1796年 - 平方剰余の相互法則の証明。コンパスと定規のみで正十七角形を作図できることを証明
1799年 - 代数学の基本定理の証明
1801年 - 『整数論の研究』出版 複素数表記、現代整数の表記導入
1801年 - 円周等分多項式の研究
1807年 - ゲッティンゲンの天文台長になり、以後40年同職につく
1809年 - 『天体運行論』出版 最小二乗法を用いたデータ補正、正規分布
1811年 - 複素積分、ガウス平面(複素数平面)ベッセルへの手紙
1827年 - 『曲面の研究』(羅: Disquisitiones generales circa superficies curvas)出版、微分幾何学を創始
1855年 - ゲッティンゲンで死去
§生い立ちと幼年期[編集]
生誕地ブラウンシュヴァイクに建てられている記念碑
ガウスはドイツのブラウンシュヴァイクで、煉瓦職人の親方であった父親と、清楚な母親の下に生まれた。子供の頃から彼は神童ぶりを発揮し、逸話として、小学校での話が残っている。ある時、1 から 100 までの数字すべてを足すように課題を出された。それを彼は、1 + 100 = 101, 2 + 99 = 101, …, 50 + 51 = 101 となるので答えは 101 × 50 = 5050 だ、と即座に解答して教師を驚かせた[2]。実際、算術の教師は彼の才能を見るにつけ、このような天才に自分が教えられることは何もないと言ったそうである。また1792年頃、15歳当時の彼は、一日15分ずつの予備の時間を当てて1000個ずつの自然数にそれぞれいくつの素数が現れるかを調べ、その次第に減っていく様子から、約100年後に証明されることになる素数定理を予想した[3]。
ガウスは言葉を満足に話せるようになる前から、誰から学ぶこともなく計算ができたといわれている。彼がまだ3歳になるかならないかの頃、父親が職人達に支払う給料の計算をしていた時、彼は父親の計算が間違っていることを傍から指摘した。父親が驚いて計算をやり直したところ、息子が指摘した通りであったという[4]。また酒樽の体積を求めるにはそれをスライスした面の面積を調べて積み重ねればよい、という積分の概念にも自力で到達していた。七歳になるとガウスは地元の小学校に入った。ここでビュットナー校長によって算数を習うものの、すでにガウスは習得済みであった。このため、校長は自費でより高級な算術の教科書をハンブルクから取り寄せたが、すぐに読み終えてしまった。ここで校長は「これ以上教えられることはない」と述べたようである。そこで校長は、助手であるヨハン・バーテルスにガウスを任せることにした。ガウスとバーテルスは共に学び、教科書を改良したり、新しい概念を生み出すようになった。バーテルスはブラウンシュヴァイク=ヴォルフェンビュッテル公フェルディナントの知人であり、フェルディナントの経済的支援によってゲッティンゲン大学に行くことになった。
大学では、ハンガリー貴族であるボーヤイ・ファルカシュ(独語表記:ファルカシュ・ヴォルフガング・ボヤイ)と友人になった。ボヤイがガウスの家を訪ねた際、ガウスの母に息子は優秀なのかと尋ねられたところ、ガウスはヨーロッパ一の数学者になるでしょうと答え、母は泣き崩れたという。
§思想とおもな業績[編集]
ガウスは奨学金を得て大学に進み、数々の重要な発見を行った。彼は、古代ギリシアの数学者達に起源を持つ定規とコンパスによる正多角形の作図問題に正確な必要十分条件を与え、正17角形が作図できることを発見した(1796年3月30日)[5]。作図できる正素数角形は古来から知られていた正三角形と正五角形のみだと考えられていたのでこの発見は当時の数学界に衝撃を与えた。作図できる正多角形の種類が増えたのは約二千年ぶりのことであった。彼はこの結果を非常に喜び、この成果である正17角形を墓標に刻むように申し入れた(結局、これは実現されなかったが、彼の記念碑には正17角形が刻まれている)。また、この発見の日より、数学的発見を記述したガウス日記を付け始め、また自分の将来の進路を数学者とすることに決めたといわれる。学位論文で彼は代数学の基本定理を最初に証明した。後に彼はこの問題に対して3つの異なる証明を行い、複素数の重要性を決定付けた。
ガウスの最も偉大な貢献は数論の分野である。この分野だけが、その全貌ではないにしろガウスの研究が体系的にまとめられて出版された。それが1801年に発表した Disquisitiones Arithmeticae であり、そのほとんどのページが二、三元の二次形式の研究に当てられている。この本は、数の合同の記号を導入し合同算術の明確な表現を与え、平方剰余の相互法則の初の完全な証明などが与えられている。自然数の素数による一意分解の定理が明確に言明され、証明されたのもこの本が最初であった。また今日でいうところの円分体の理論が記述されているほか、素数定理に対する予想が述べられている。しかしこの本は、あまりにも時代を抜きん出た難解な著作であり、その上出版社の問題から発行部数が相当低かったこともあって、実際には当時理解できるものは限られていた。結局それがようやく大勢に理解されるようになるのは、それを詳しく解読し講義したディリクレの時代になってからである。
ガウスは発表はしなかったが、解析学の分野でも時代を先んじた研究を行っていた。当時はまだ複素数が完全なる市民権を得ておらず、できれば使用を避けたいという風潮のあった時代であった。そのため、ガウスは代数学の基本定理を証明した学位論文では誤解を避けるために虚数を表に出さず、多項式が実数の範囲内で1次または2次の因数に分解されるとした。そのような時代にあっても、早くから虚数への偏見から完全に自由であったガウスは複素数の世界に深く分け入り、数多の美しい結果を得た。まず1797年から始まる楕円関数の最初の研究、レムニスケート関数の発見である。そして1800年には一般楕円関数を発見し、その理論を展開した。楕円関数の発見が世の中に最初に公表されたのは 1828年のクレレ誌上のニールス・アーベルの論文によってであるから、ガウスがいかに時代を先んじていたかが分かる。また同じ1800年頃、モジュラー関数を発見してその理論を組み立てたが、それはデデキントの同種の仕事に先立つこと50年であった。一方、関数論は1825年のコーシーの虚数積分の論文に端を発し、その後30年を掛けて対象としての解析関数の認知にまで発展したが、ガウスには1811年にはすでに、後に「コーシーの積分定理」として知られる事柄を確実に把握し、使いこなしていた。すでに1790年代の中頃からガウス平面上で物事を考えていたガウスの眼には二重周期関数の存在は自明で、三角関数の拡張を目指して楕円積分の逆関数を考え、その結果 「楕円関数」を得たのもごく自然の動きであり、また複素積分での積分路の役割を考えてコーシーの積分定理の内容に逢着したのもこれまたごく自然であろう。
ガウスは、そうした成果の全てを発表しなかったが、彼がそのように、自身の成果を発表せずにいたのにはいくつかの要因があると思われる。その1はガウスにとっては研究で美しい結果を得ることが最大の報酬であり、他人の認知を必要としなかったことである。そしてその2は世間の無理解、誤解によって生ずる論争の煩わしさを嫌ったことである。実際、ガウスは非ユークリッド幾何学の可能性についての自身の考えが世に漏れることに極めて慎重であった。そしてその3は当時の成果発表手段の乏しさである。その頃は今のように論文原稿を送るべき学会誌や論文雑誌は存在せず、成果発表は主として自家印刷の小冊子や単行本によった(しばらくして学士院や大学の紀要も)。実際、ガウスの整数論は単行本として発表された。そしてアーベルの「代数方程式に関する論(五次の一般的な方程式を解くことの不可能の証明)」は自家印刷の粗末な小冊子として出されて、その時は世間に認知されずに終わった。アーベルのこの論文や楕円関数論が世間に認知されたのは1826年に論文雑誌「クレレ誌」が創刊され、それに寄稿しての話である。このような時代にあってガウスは解析学の大著述を計画するが、研究が進展して考察の範囲がとめどもなく拡大していき完結の機会を逸し、また測量学の実地での測量や膨大な数値計算、天文観測などで多忙であったこと、ナポレオンによるヨーロッパの政治混乱による経済的困窮などにより、ついに世に出ることがなかったという。
1809年にガウスは Theoria motus(『天体運行論』)の中で彼の主要な研究であった最小二乗法の振る舞いについて記す。これは現在の科学ではほぼすべての分野で観測等の誤差を含むデータから推定値を求める際の計算法として用いられている。また、誤差の分布に対してある程度の仮定を設けることで正規分布が導かれることや、正規分布に基づいて最小二乗法による推定の良さ(今日の最尤推定)が導かれることなどを証明した。これについての論文は1805年にアドリアン=マリ・ルジャンドルが発表していたが、ガウスはこの理論に1795年には到達していた(ただし、これがルジャンドルとの先取権を巡るいざこざの原因となり、面倒を嫌うガウスの秘密主義を招いたとも言われる)。
ガウスはブラウンシュバイク公爵から援助されて研究生活をしていた。それを不満と思っていたわけではなく、生活に困ってもいなかったが、数学そのものがそれほど世の中の役に立つとは考えていなかった(注、職業数学者というポストが成立したのは主に大学制度が出来てからで、それ以前は貴族王侯の名誉を支える一種の芸人として仕えるあるいは助成を受ける者として、あるいは自然科学や産業上の研究と不可分な形で、または個人の名誉の探求行為としてのみ存在した)。そのため、彼自身は天文学者になることを願うようになり、1801年に発見後行方不明になっていたケレスの軌道決定の功績が認められて1807年にゲッティンゲンの天文台長になった。そこでも測定用機材の開発(ガウス式レンズの設計)、楕円関数の惑星の摂動運動への応用、力学に於ける最小作用の法則の定式化の一つである「ガウスの最小拘束の原理」など、数々の発見を行っている。
1818年にハノーファー王国の測量をする測定装置のために、後に大きな影響を与えた正規分布についての研究を始めた。これは測量結果の誤差に関する興味からである。またこのときの測量成果の取りまとめに当たり考案した、等角写像による地球楕円体表面から平面への地図投影法はガウス・クリューゲル図法として今日においても世界各国で活用されている。
測量への興味から曲面論を創始し、後のリーマン幾何学に影響を与えた。1827年に『曲面の研究』(羅: Disquisitiones generales circa superficies curvas)を出版し、曲面の面積と対応する単位球面の面積の無限小比として意味付けられる曲率(今日ではガウス曲率(英語版)と呼ばれる)が、曲面の内在的量にのみ依存することを示し、ラテン語で Theorema Egregium(驚異の定理)と呼んだ。この定理は、微分幾何学においてガウスの基本定理、あるいは単にガウスの定理とも呼ばれる。
ガウスは非ユークリッド幾何学の一つである双曲幾何学の発見者でもある。しかしそれに関する発表は一切行わなかった。友人であるファルカス・ヴォルフガング・ボヤイはユークリッド幾何学以外の公理を発見しようと多くの年月を費やしたが失敗した。ボヤイの息子であるヤーノシュ・ボヤイは1820年代に双曲幾何学を再発見し1832年に結果を発表した。これについてガウスは「書かなくて良くなった」と発言している。この後、物理学の分野でこれが現実の世界にどれだけ妥当しているのかを計測しようと試みている。
また地球磁気の研究に関連して、フーリエ級数展開の高速な計算方法を開発し、データ数が2の冪乗の場合についてを論文に記述しているが、これは後の電子計算機の時代に FFT として定式化(が再発見)された方法と本質的には同じものである。
また1831年には物理学教授のヴィルヘルム・ヴェーバーとの共著を行い、電磁気学について多くの回答を与えた。ガウスの定理・ガウスの法則・ガウス(磁束密度の単位)・ガウス単位系は彼の名に因む。電気でのキルヒホッフの法則に当たるものを発見し、電信装置を作り上げた。これは1873年のウィーン万国博覧会に展示された(この話を旅行中の船上で人から聞き、思索の末にモールスは電信符号を発明した。ガウスとウェーバーの電信機は、電流計の針の振れ角の大きさで通信をするアナログ方式であったが、モールス符号はデジタル方式である。またモールスは英文に対して符号長が平均的に短くなるように印刷所の活字の割合を参考として符号の割り当てを決めてもいる)。
また、ガウスは液体の表面張力や毛細管現象などについての研究も発表している。ガウスの研究の志向はその時代に自然哲学の巨星であったニュートンやオイラーが為した業績をさらに前進させるといったものが多かったように思われる。
彼は数学の教授になったことはなく、教師となることも嫌ったが、リヒャルト・デーデキントやベルンハルト・リーマンなど彼の弟子達は、彼の僚友で後継者としてユダヤ人初の正教授となったモーリツ・アブラハム・スターンにも才能を引き出され、偉大な数学者となった。
§生活と家庭、友人[編集]
娘、テレーズ(Therese, 1816年 - 1864年)
ガウスは信心深く、保守的な人であった。彼は君主制を支持し、フランス革命の際にはナポレオンと対立した。ガウスは、最愛の妻、ヨハンナ・オストホフ(Johanna Osthoff, 1780年 - 1809年)が若くして亡くなり、さらにそれを追うように次男ルイスが亡くなり、私生活は暗いものであった。特に彼はヨハンナを精神的な意味も込めて溺愛しており、彼女の死は彼の精神に大きなショックを与え、以後完全に回復することはなかった。意外にも彼はルイスの死後、すぐにフリーデリカ・ヴィルヘルミーネ・ヴァルトエック(Friederica Wilhelmine Waldeck, 愛称ミンナ:Minna)と2度目の結婚をしたが、この結婚の幸せさは希薄なものだったようであるである。彼は亡き前妻の面影が離れず、妻への手紙にもそのことを書く始末であった。彼女も1831年に長い病気の末に亡くなり、その後はガウスが亡くなるまで娘のテレーズ (Therese) が身の回りの世話をしていたようで、ガウスにとって、その事が幸せのひとつだったようだ。1812年から彼の母親が1839年に亡くなるまで一緒に住んでいた。彼は他の数学者と一緒に何かをすることは殆どなく、打ち解けない感じで厳粛な人だったと多くの人が伝えている。
ガウスには各妻に3人ずつで合計6人の子供がいた。ヨハンナ (Johanna) との間の子供は、ヨゼフ(Joseph, 1806年 - 1873年)、ヴィルヘルミーナ(Wilhelmina, 愛称はやはりミン, 1808年 - 1846年)、ルイス(Louis, 1809年 - 1810年)である。なかでもヴィルヘルミーナの才能はガウスに近いものがあったと言われているが、彼女は若くして亡くなってしまう。ミンナ・ヴァルトエックとの間の子供はオイゲネ(Eugene, 1811年 - 1896年)、ヴィルヘルム(Wilhelm, 1813年 - 1879年)、テレーズ(Therese, 1816年 - 1864年)をもうけた。オイゲネは1832年頃父の元を離れてアメリカ合衆国に移住し、ミズーリ州のセント・チャールズに移住した。彼はそこで尊敬される存在となった。しばらく後にヴィルヘルムもミズーリに移住し、農業を始め、後にセントルイスで靴のビジネスで成功した。テレーズは結婚した後もガウスの面倒を見て家に留まった。http://ja.wikipedia.org/wiki/%E3%82%AB%E3%83%BC%E3%83%AB%E3%83%BB%E3%83%95%E3%83%AA%E3%83%BC%E3%83%89%E3%83%AA%E3%83%92%E3%83%BB%E3%82%AC%E3%82%A6%E3%82%B9
再生核研究所声明202(2015.2.2)ゼロ除算100/0=0,0/0=0誕生1周年記念声明 ― ゼロ除算の現状と期待
ゼロ除算の発見、経過、解説などについては、結構な文献に記録されてきた:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9)ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25) Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185: The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1 ― 
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
再生核研究所声明199(2015.1.15)世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0
ゼロ除算100/0=0,0/0=0誕生1周年記念日に当たり、概観して共同研究者と共に夢を明るく 楽しく描きたい。まずは、ゼロ除算の意義を復習しておこう:
1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 簡明で、決定的な解 ゼロで   何でも割れば ゼロ  z/0=0  である をもたらしたこと。
2)ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立されたこと。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に 非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていたとされている。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な結果は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる という定理 である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。
11)ゼロ除算が可能であるか否かの議論について:
現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。しかしながら、出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかという未知の分野が望めて、大いに期待できる世界が拓かれる。
12)ゼロ除算は、数学ばかりではなく、 人生観、世界観や文化に大きな影響を与える。
次を参照:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として表していることである。
ゼロ除算は 既に数学的に確定され、その意義も既に明らかであると考えられるが、声明199にも述べられているように、ゼロ除算が不可能であるとの世の常識、学術書、数学は 数学者の勝手な解釈による歴史的な間違いに当たる ことをしっかりと理解させ、世の教育書、学術書の変更を求めていきたい。― 誰が、真実を知って、偽りを教え、言い続けられるだろうか。― 教育に於ける除算、乗算の演算の意味を 道脇方式で回復させ、新しい結果 ゼロ除算を世に知らしめ、世の常識とさせたい。それは ちょうど天動説が地動説に変わったように 世界史の確かな進化と言えるだろう。
ゼロ除算の研究の進展は、数学的には 佐藤超関数の理論からの展開、発展、 物理学的には ゼロ除算の物理法則の解釈や、衝突現象における山根の面白い解釈の究明 などに興味が持たれる。しかしながら、ゼロ除算の本質的な解明とは、Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の自然な現象として受け入れられることである。数学では、その強力な不連続性を自然なものとして説明され、解明されることが求められる。
以 上

ゼロ除算は、誰にもわかるが、みんな間違って理解している。
正しい結果は、驚嘆すべきもので、何でも0で割れば、0ということが最近発見された。


再生核研究所声明200(2015.1.16) ゼロ除算と複素解析の現状 ―佐藤超関数論との関係が鍵か?
正確に次のように公開して複素解析とゼロ除算の研究を開始した:
特異点解明の歩み100/0=0,0/0=0 関係者:
複素解析学では、1/0として、無限遠点が存在して、美しい世界です。しかしながら、1/0=0 は 動かせない真実です。それで、勇気をもって進まざるを得ない:― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.
私には 無理かと思いますが、世の秀才の方々に 挑戦して頂きたい。空論に付き合うのはまっぴらだ と考える方も多いかと思いますが、面白いと考えられる方で、楽しく交流できれば幸いです。宜しくお願い致します。 添付 物語を続けたい。敬具 齋藤三郎
2014.4.1.11:10
上記で、予想された難問、 解析関数は、孤立特異点で確定値をとる、が 自分でも予想しない形で解決でき、ある種の実体を捉えていると考えたのであるが、この結果自体、世のすべての教科書の内容を変える事件であるばかりではなく、確立されている無限遠点の概念に 新しい解釈を与えるもので、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6月、帰国後、気に成っていた、金子晃先生の 30年以上前に購入した超函数入門の本に 極めて面白い記述があり、佐藤超関数とゼロ除算の面白い関係が出てきた。さらに 特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられているが、面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていることが分かった。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
現在まで、添付21ページの論文原稿について 慎重に総合的に検討してきた。
そこで、問題の核心、ゼロ除算の発展の基礎は、次の論点に有るように感じられてきた:
We can find many applicable examples, for example, as a typical example in A. Kaneko (\cite{kaneko}, page 11) in the theory of hyperfunction theory: for non-integers $\lambda$, we have
\begin{equation}
x_+^{\lambda} = \left[ \frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}\right] =\frac{1}{2i \sin \pi \lambda}\{(-x + i0)^{\lambda}- (-x - i0)^{\lambda}\}
\end{equation}
where the left hand side is a Sato hyperfunction and the middle term is the representative analytic function whose meaning is given by the last term. For an integer $n$, Kaneko derived that
\begin{equation}
x_+^{n} = \left[- \frac{z^n}{2\pi i} \log (-z) \right],
\end{equation}
where $\log$ is a principal value: $ \{ - \pi < \arg z < +\pi \}$. Kaneko stated there that by taking a finite part of the Laurent expansion, the formula is derived.
Indeed, we have the expansion, for around $ n$, integer
$$
\frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}
$$
\begin{equation}
= \frac{- z^n}{2\pi i} \frac{1}{\lambda -n} - \frac{z^n}{2\pi i} \log (-z )
  • \left( \frac{\log^2 (-z) z^n}{2\pi i\cdot 2!} + \frac{\pi z^n}{2i\cdot 3!}
\right)(\lambda - n) + ...
\end{equation}
(\cite{kaneko}, page 220).
By our Theorem 2, however, we can derive this result (4.3) from the Laurant expansion (4.4), immediately.
上記ローラン展開で、\lambda に n を代入したのが ちょうど n に対する佐藤の超関数になっている。それは、ゼロ除算に言う、 孤立特異点における解析関数の極における確定値である。これはゼロ除算そのものと殆ど等価であるから、ローラン展開に \lambda = n を代入した意味を、上記の佐藤超関数の理論は述べているので 上記の結果を分析すれば、ゼロ除算のある本質を捉えることができるのではないかと考えられる。
佐藤超関数は 日本で生まれた、基本的な数学で 優秀な人材を有している。また、それだけ高級、高度化しているが、このような初歩的、基本的な問題に関係がある事が明らかになってきた。そこで、佐藤超関数論の専門家の方々の研究参加が望まれ、期待される。また、関係者の助言やご意見をお願いしたい。
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として示していることである。
以 上

再生核研究所声明199(2015.1.15) 世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0
ゼロ除算は 西暦628年インドでゼロが文献に記録されて以来、問題とされてきた。ゼロ除算とは、ゼロで割ることを考えることである。これは数学の基本である、四則演算、加法、減法、乗法、除法において、除法以外は何時でも自由にできるのに、除法の場合だけ、ゼロで割ることができないという理由で、さらに物理法則を表す多くの公式にゼロ除算が自然に現れていることもあって、世界各地で、今でも絶えず、問題にされていると考えられる。― 小学生でも どうしてゼロで割れないのかと毎年、いろいろな教室で問われ続いているのではないだろうか.
これについては、近代数学が確立された以後でも、何百年を越えて 永い間の定説として、ゼロ除算は 不可能であり、ゼロで割ってはいけないことは、初等教育から、中等、高校、大学そして学術界、すなわち、世界の全ての文献と理解はそうなっている。変えることのできない不変的な法則のように理解されていると考えられる。
しかるに2014年2月2日 ゼロ除算は、可能であり、ゼロで割ればゼロであることが、偶然発見された。その後の経過、背景や意味付け等を纏めてきた:
再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)― 
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
ところが、気づいてみると、ゼロ除算は当たり前なのに、数学者たちが勝手に、割り算は掛け算の逆と思い込み、ゼロ除算は不可能であると 絶対的な真理であるかのように 烙印を押して、世界の人々も盲信してきた。それで、物理学者が そのために基本的な公式における曖昧さに困ってきた事情は ニュートンの万有引力の法則にさえ見られる。
さらに、誠に奇妙なことには、除算はその言葉が表すように、掛算とは無関係に考えられ、日本ばかりではなく西欧でも中世から除算は引き算の繰り返しで計算されてきた、古い、永い伝統がある。その考え方から、ゼロ除算は自明であると道脇裕氏と道脇愛羽さん6歳が(四則演算を学習して間もないときに)理解を示した ― ゼロ除算は除算の固有の意味から自明であり、ゼロで割ればゼロであるは数学的な真実であると言える(声明194)。数学、物理、文化への影響も甚大であると考えられる。
数学者は 数学の自由な精神で 好きなことで、考えられることは何でも考え、不可能を可能にし、分からないことを究め、真智を求めるのが 数学者の精神である。非ユークリッド幾何学の出現で 絶対は変わり得ることを学び、いろいろな考え方があることを学んできたはずである。そのような観点から ゼロ除算の解明の遅れは 奇妙な歴史的な事件である と言えるのではないだろうか。
これは、数学を超えた、真実であり、ゼロ除算は不可能であるとの 世の理解は間違っている と言える。そこで、真実を世界に広めて、人類の歴史を進化させるべきであると考える。特に声明176と声明185を参照。ゼロ除算は 堪らなく楽しい 新世界 を拓いていると考える。
以 上


0 件のコメント:

コメントを投稿