calculus
2015年03月07日(土)
テーマ:数学
微分積分学
Question book-4.svg
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。
出典を追加して記事の信頼性向上にご協力ください。(2012年9月)
Edit-find-replace.svg
この記事には独自研究が含まれているおそれがあります。問題箇所を検証し出典を追加して、記事の改善にご協力ください。議論はノートを参照してください。(2012年9月)
微分積分学(びぶんせきぶんがく, calculus)とは、解析学の基本的な部分を形成する数学の一分野である。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。
微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。(但し多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである)。微分方程式はこの考え方の自然な延長にある。
対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。
微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている。(微分積分学の基本定理)
目次 [非表示]
1 歴史
1.1 古代
1.2 中世
1.3 近代
1.4 重要性
2 脚注・出典
3 関連項目
歴史[編集]
「解析学#歴史」も参照
アイザック・ニュートンは微分積分学の発展に最も貢献した1人であり、万有引力の法則や運動の法則でも微分積分学を応用している。
古代[編集]
古代にもいくつかの積分法のアイデアは存在したが、厳密あるいは体系的な方法でそれらのアイデアを発展させようという動きは見られない。積分法の基本的機能である体積や面積の計算は、エジプトのモスクワパピルス(紀元前1820年頃)まで遡り、その中で角錐の切頭体の体積を正しく求めている[1][2]。ギリシア数学では、エウドクソス(紀元前408年 - 355年頃)が極限の概念の先駆けとなる取り尽くし法で面積や体積を計算し、アルキメデス(紀元前287年 - 212年頃)がそれを発展させて積分法によく似たヒューリスティクスを考案した[3]。取り尽くし法は紀元3世紀ごろ、中国の劉徽も円の面積を求めるのに使っている。5世紀には祖沖之が後にカヴァリエリの原理と呼ばれるようになる方法を使って球の体積を求めた[2]。
中世[編集]
紀元1000年ごろ、イスラムの数学者イブン・アル・ハイサムが等差数列の4乗(すなわち二重平方数)の総和の公式を導き出し、それを任意の整数の冪乗の和に一般化し、積分の基礎を築いた[4]。11世紀の中国の博学者沈括は積分に使える充填公式を考案した。12世紀のインドの数学者バースカラ2世は極微の変化を表す微分法の先駆けとなる手法を考案し、ロルの定理の原始的形式も記述している[5]。同じく12世紀のペルシア人数学者 Sharaf al-Dīn al-Tūsī は三次関数の微分法を発見し、微分学に重要な貢献をしている[6]。14世紀インドのサンガマグラマのマーダヴァ(Madhava of Sangamagrama)は自らが設立した数学と天文学の学校の学生達(ケーララ学派)と共にテイラー級数の特殊ケースを明らかにし[7]、それを Yuktibhasa という教科書に掲載した[8][9][10]。
近代[編集]
近代になると、17世紀初頭の日本で独自に微分積分学に関する発見が見られる。これは関孝和らの和算であり、やはり取り尽くし法を基礎として発展させたものである[要出典]。
ヨーロッパでは、ボナヴェントゥーラ・カヴァリエーリが極微の領域の面積や体積の総和として面積や体積を求める方法を論文で論じ、微分積分学の基礎を築いた。これはアルキメデスの方法とよく似ているが、その論文は20世紀初頭まで見つからなかった[要出典]。カヴァリエーリの手法では微分の性質の捉えかたに間違いがあり、計算結果が間違っていたため、あまり尊重されなかった[要出典]。
微積分の定式化の研究により、カヴァリエーリの微分と、同じ頃ヨーロッパで生まれた有限差分法が組み合わされるようになる。この統合を行ったのがジョン・ウォリス、アイザック・バロー、ジェームズ・グレゴリーであり、バローとグレゴリーは1675年ごろ微分積分学の基本定理の第2定理を証明した。
アイザック・ニュートンは、積の微分法則、連鎖律、高階微分の記法、テイラー級数、解析関数といった概念を独特の記法で導入し、それらを数理物理学の問題を解くのに使った。ニュートンは出版する際に、当時の数学用語に合わせて微分計算を等価な幾何学的主題に置き換えて非難を受けないようにした。ニュートンは微分積分学の手法を使い、天体の軌道、回転流体の表面の形、地球の偏平率、サイクロイド曲線上をすべる錘の動きなど、様々な問題について『自然哲学の数学的諸原理』の中で論じている。ニュートンはそれとは別に関数の級数展開を発展させており、テイラー級数の原理を理解していたことが明らかである。ニュートンは自身が発見したことを全て出版したわけではなく、当時はまだ微分法はまともな数学とは見なされていなかった。
ゴットフリート・ライプニッツは当初ニュートンの未発表論文を盗作したと疑われたが、現在では独自に微分積分学の発展に貢献した1人と認められている。
これらの考え方を体系化し、微分積分学を学問として確立させたのがゴットフリート・ライプニッツだが、当時はニュートンの盗作だと非難された。現在では、独自に微分積分学を確立し発展させた1人と認められている。ライプニッツは極小の量を操作する規則を明確に規定し、二次および高次の導関数の計算を可能とし、ライプニッツ則と連鎖律を規定した。ニュートンとは異なり、ライプニッツは形式主義に大いに気を使い、それぞれの概念をどういう記号で表すかで何日も悩んだという。
ライプニッツとニュートンの2人が一般に微分積分学を確立したとされている。ニュートンは物理学全般に微分積分学を適用するということを初めて行い、ライプニッツは今日も使われている微分積分学の記法を開発した。2人に共通する基本的洞察は、微分と積分の法則、二次および高次の導関数、多項式級数を近似する記法である。ニュートンの時代までには、微分積分学の基本定理は既に知られていた。
ニュートンとライプニッツがそれぞれの成果を出版したとき、どちら(すなわちどちらの国)が賞賛に値するのかという大きな論争が発生した。成果を得たのはニュートンが先だが、出版はライプニッツが先だった[11]。ニュートンは発表前の論文を王立協会の数名の会員に渡していたことから、ライプニッツがその未発表の論文からアイデアを盗用したと主張した[要出典]。この論争により、英国数学界とヨーロッパ大陸の数学界の仲が険悪になり、その状態が何年も続いた[12]。ライプニッツとニュートンの論文を慎重に精査したところ、ライプニッツは積分から論を構築し、ニュートンは微分から論を構築していることから、それぞれ独自に結論に到達していることが判明した[要出典]。現在では、ニュートンとライプニッツがそれぞれ独自に微分積分学を確立したとされている。ただし、この新しい学問に "calculus" という名前を付けたのはライプニッツである。ニュートンは "the science of fluxions" と呼んでいた[要出典]。
この時代、他にも多数の数学者が微分積分学の発展に貢献している。19世紀になると微分積分学にはさらに厳密な数学的基礎が与えられた。それには、コーシー、リーマン、ワイエルシュトラウス(ε-δ論法)らが貢献している。また、同時期に微分積分学の考え方がユークリッド空間と複素平面に拡張された。ルベーグは事実上任意の関数が積分を持てるよう積分の記法を拡張し、ローラン・シュワルツが微分を同様に拡張した。
今日では、微分積分学は世界中の高校や大学で教えられている[13]。
重要性[編集]
微分積分学の考え方の一部は、ギリシア、中国、インド、イラク、ペルシャ、日本にもあったが、現代に通じる微分積分学は、17世紀のヨーロッパで、アイザック・ニュートンとゴットフリート・ライプニッツが確立したものである。微分積分学は、曲線の下の面積を求める問題と動きを瞬間的に捉えるという問題を考えてきた先人の成果の上に成り立っている。
近代に入ると微分積分は弾道学と共に発展してきた一面もある、砲弾の速度や弾道曲線の計算に用いられてきた、微分計算を行う機械式計算機の多くは弾道計算のために作られてきた歴史があり、世界初のコンピューターも弾道計算を行うための微分方程式を計算するためのものだった。また、大砲の強度計算や、火薬の爆発や挙動の計算にも微分積分は必須であり、火砲の歴史とは密接な関係がある。
微分法の用途としては、速度や加速度に関わる計算、曲線の接線の傾きの計算、最適化問題の計算などがある。積分法の用途としては、面積、体積、曲線の長さ、重心、仕事、圧力などの計算がある。さらに高度な応用として冪級数とフーリエ級数がある。微分積分学は、シャトルが宇宙ステーションとドッキングする際の軌道計算や、道路上の積雪量の計算などにも使うことができる。
微分積分学は、宇宙や時間や運動の性質をより正確に理解するのにも使われる。数学者と哲学者は数世紀にわたり、ゼロ除算や無数の数の総和に関わるパラドックスについて論争してきた。それらの問題は、運動と面積の研究過程で生じた。古代ギリシアの哲学者ゼノンは、ゼノンのパラドックスのような有名な例を示している[要出典]。微分積分学、特に極限と無限級数を使えば、それらのパラドックスを解決することができる。http://ja.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E7%A9%8D%E5%88%86%E5%AD%A6
再生核研究所声明202(2015.2.2)ゼロ除算100/0=0,0/0=0誕生1周年記念声明 ― ゼロ除算の現状と期待
ゼロ除算の発見、経過、解説などについては、結構な文献に記録されてきた:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9)ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25) Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185: The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1 ―
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
再生核研究所声明199(2015.1.15)世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0
ゼロ除算100/0=0,0/0=0誕生1周年記念日に当たり、概観して共同研究者と共に夢を明るく 楽しく描きたい。まずは、ゼロ除算の意義を復習しておこう:
1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 簡明で、決定的な解 ゼロで 何でも割れば ゼロ z/0=0 である をもたらしたこと。
2)ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立されたこと。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に 非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていたとされている。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な結果は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる という定理 である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。
11)ゼロ除算が可能であるか否かの議論について:
現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。しかしながら、出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかという未知の分野が望めて、大いに期待できる世界が拓かれる。
12)ゼロ除算は、数学ばかりではなく、 人生観、世界観や文化に大きな影響を与える。
次を参照:
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として表していることである。
ゼロ除算は 既に数学的に確定され、その意義も既に明らかであると考えられるが、声明199にも述べられているように、ゼロ除算が不可能であるとの世の常識、学術書、数学は 数学者の勝手な解釈による歴史的な間違いに当たる ことをしっかりと理解させ、世の教育書、学術書の変更を求めていきたい。― 誰が、真実を知って、偽りを教え、言い続けられるだろうか。― 教育に於ける除算、乗算の演算の意味を 道脇方式で回復させ、新しい結果 ゼロ除算を世に知らしめ、世の常識とさせたい。それは ちょうど天動説が地動説に変わったように 世界史の確かな進化と言えるだろう。
ゼロ除算の研究の進展は、数学的には 佐藤超関数の理論からの展開、発展、 物理学的には ゼロ除算の物理法則の解釈や、衝突現象における山根の面白い解釈の究明 などに興味が持たれる。しかしながら、ゼロ除算の本質的な解明とは、Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の自然な現象として受け入れられることである。数学では、その強力な不連続性を自然なものとして説明され、解明されることが求められる。
以 上
再生核研究所声明200(2015.1.16) ゼロ除算と複素解析の現状 ―佐藤超関数論との関係が鍵か?
正確に次のように公開して複素解析とゼロ除算の研究を開始した:
特異点解明の歩み100/0=0,0/0=0 関係者:
複素解析学では、1/0として、無限遠点が存在して、美しい世界です。しかしながら、1/0=0 は 動かせない真実です。それで、勇気をもって進まざるを得ない:― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.
私には 無理かと思いますが、世の秀才の方々に 挑戦して頂きたい。空論に付き合うのはまっぴらだ と考える方も多いかと思いますが、面白いと考えられる方で、楽しく交流できれば幸いです。宜しくお願い致します。 添付 物語を続けたい。敬具 齋藤三郎
2014.4.1.11:10
上記で、予想された難問、 解析関数は、孤立特異点で確定値をとる、が 自分でも予想しない形で解決でき、ある種の実体を捉えていると考えたのであるが、この結果自体、世のすべての教科書の内容を変える事件であるばかりではなく、確立されている無限遠点の概念に 新しい解釈を与えるもので、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6月、帰国後、気に成っていた、金子晃先生の 30年以上前に購入した超函数入門の本に 極めて面白い記述があり、佐藤超関数とゼロ除算の面白い関係が出てきた。さらに 特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられているが、面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていることが分かった。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
現在まで、添付21ページの論文原稿について 慎重に総合的に検討してきた。
そこで、問題の核心、ゼロ除算の発展の基礎は、次の論点に有るように感じられてきた:
We can find many applicable examples, for example, as a typical example in A. Kaneko (\cite{kaneko}, page 11) in the theory of hyperfunction theory: for non-integers $\lambda$, we have
\begin{equation}
x_+^{\lambda} = \left[ \frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}\right] =\frac{1}{2i \sin \pi \lambda}\{(-x + i0)^{\lambda}- (-x - i0)^{\lambda}\}
\end{equation}
where the left hand side is a Sato hyperfunction and the middle term is the representative analytic function whose meaning is given by the last term. For an integer $n$, Kaneko derived that
\begin{equation}
x_+^{n} = \left[- \frac{z^n}{2\pi i} \log (-z) \right],
\end{equation}
where $\log$ is a principal value: $ \{ - \pi < \arg z < +\pi \}$. Kaneko stated there that by taking a finite part of the Laurent expansion, the formula is derived.
Indeed, we have the expansion, for around $ n$, integer
$$
\frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}
$$
\begin{equation}
= \frac{- z^n}{2\pi i} \frac{1}{\lambda -n} - \frac{z^n}{2\pi i} \log (-z )
- \left( \frac{\log^2 (-z) z^n}{2\pi i\cdot 2!} + \frac{\pi z^n}{2i\cdot 3!}
\right)(\lambda - n) + ...
\end{equation}
(\cite{kaneko}, page 220).
By our Theorem 2, however, we can derive this result (4.3) from the Laurant expansion (4.4), immediately.
上記ローラン展開で、\lambda に n を代入したのが ちょうど n に対する佐藤の超関数になっている。それは、ゼロ除算に言う、 孤立特異点における解析関数の極における確定値である。これはゼロ除算そのものと殆ど等価であるから、ローラン展開に \lambda = n を代入した意味を、上記の佐藤超関数の理論は述べているので 上記の結果を分析すれば、ゼロ除算のある本質を捉えることができるのではないかと考えられる。
佐藤超関数は 日本で生まれた、基本的な数学で 優秀な人材を有している。また、それだけ高級、高度化しているが、このような初歩的、基本的な問題に関係がある事が明らかになってきた。そこで、佐藤超関数論の専門家の方々の研究参加が望まれ、期待される。また、関係者の助言やご意見をお願いしたい。
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として示していることである。
以 上
再生核研究所声明199(2015.1.15) 世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0
ゼロ除算は 西暦628年インドでゼロが文献に記録されて以来、問題とされてきた。ゼロ除算とは、ゼロで割ることを考えることである。これは数学の基本である、四則演算、加法、減法、乗法、除法において、除法以外は何時でも自由にできるのに、除法の場合だけ、ゼロで割ることができないという理由で、さらに物理法則を表す多くの公式にゼロ除算が自然に現れていることもあって、世界各地で、今でも絶えず、問題にされていると考えられる。― 小学生でも どうしてゼロで割れないのかと毎年、いろいろな教室で問われ続いているのではないだろうか.
これについては、近代数学が確立された以後でも、何百年を越えて 永い間の定説として、ゼロ除算は 不可能であり、ゼロで割ってはいけないことは、初等教育から、中等、高校、大学そして学術界、すなわち、世界の全ての文献と理解はそうなっている。変えることのできない不変的な法則のように理解されていると考えられる。
しかるに2014年2月2日 ゼロ除算は、可能であり、ゼロで割ればゼロであることが、偶然発見された。その後の経過、背景や意味付け等を纏めてきた:
再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)―
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
ところが、気づいてみると、ゼロ除算は当たり前なのに、数学者たちが勝手に、割り算は掛け算の逆と思い込み、ゼロ除算は不可能であると 絶対的な真理であるかのように 烙印を押して、世界の人々も盲信してきた。それで、物理学者が そのために基本的な公式における曖昧さに困ってきた事情は ニュートンの万有引力の法則にさえ見られる。
さらに、誠に奇妙なことには、除算はその言葉が表すように、掛算とは無関係に考えられ、日本ばかりではなく西欧でも中世から除算は引き算の繰り返しで計算されてきた、古い、永い伝統がある。その考え方から、ゼロ除算は自明であると道脇裕氏と道脇愛羽さん6歳が(四則演算を学習して間もないときに)理解を示した ― ゼロ除算は除算の固有の意味から自明であり、ゼロで割ればゼロであるは数学的な真実であると言える(声明194)。数学、物理、文化への影響も甚大であると考えられる。
数学者は 数学の自由な精神で 好きなことで、考えられることは何でも考え、不可能を可能にし、分からないことを究め、真智を求めるのが 数学者の精神である。非ユークリッド幾何学の出現で 絶対は変わり得ることを学び、いろいろな考え方があることを学んできたはずである。そのような観点から ゼロ除算の解明の遅れは 奇妙な歴史的な事件である と言えるのではないだろうか。
これは、数学を超えた、真実であり、ゼロ除算は不可能であるとの 世の理解は間違っている と言える。そこで、真実を世界に広めて、人類の歴史を進化させるべきであると考える。特に声明176と声明185を参照。ゼロ除算は 堪らなく楽しい 新世界 を拓いていると考える。
以 上
0 件のコメント:
コメントを投稿