0で割るとはどういうこと?
◆ 前回に引き続き,計算の不思議シリーズ(?)第2弾です。
0という数については,以前少しこの連載でも触れましたが,この数の発見は数学史に大きな影響を与えた出来事であると同時に,様々な厄介ごとが生まれる結果ともなりました。
0の性質はいろいろありますが,その中の1つに,
「なにと掛け算をしても答えは0」
というものがあります。
0は何倍したって0だし,どんな数を0倍しても0である,という,小学生でも知っている性質です。
しかし,この分かりやすくて簡単な性質のお陰で,私たちは大いに苦しむことになってしまうのです。
----------------------------------------------------------------------------
問題です。
「0÷3」
の答えはいくらでしょう?
もちろん,0に決まっています。お菓子が全く何もないのだから,それを3人で分けても,何もない状態のまま,なんていう説明が出来ますね。
では,「3÷0」はいくらでしょうか?
「そんなもの,0に決まってるじゃないか!」
と,簡単に片付けようとしたそこのあなた!
事はそう簡単な話ではないのです。
実はこの答え,0ではないのです。
考えてみてください。3つのお菓子があって,それを「0人で分ける」というのはいったいどういうことなのか。
あるいは,3つのお菓子を,「0個ずつに分ける」というのはどういうことなのか。
0を含んだ割り算の中には,0が持つ底知れぬ恐ろしさが隠れ潜んでいるのです。
----------------------------------------------------------------------------
「3÷0」の答え,0でなければいったいいくらなんだ? と気になられるでしょうが,このような説明をしてみましょう。
例えば6÷3の答えは,次の式の( )の中の数と同じです。
3×( )=6
( )の中に入る数は2ですから,6÷3の答えは2です。
27÷3の答えは,
3×( )=27
の( )の中に入る数と同じです。つまり,答えは9です。
A÷Bという割り算の答えが知りたければ,B×( )=Aという式を作り,( )の中に何が入るか考えればよいことになりますね。
0÷3の答えは,3×( )=0という式を考えれば,0だとすぐ分かります。
では,問題の「3÷0」の場合はどうなるでしょうか。
この答えは,「0×( )=3」という式を考えれば分かるはずなのですが・・・
・・・そうです。気付いていただけたでしょうか?
そんな数などない!ということに。
0に何をかけたって,答えは0になるはずです。3になることは絶対にありません。
つまり,「0×( )=3」に当てはまる数など,この世にはありません。
ということで,3÷0の答えは,「ない」*1 というのが正解になります。
----------------------------------------------------------------------------
0の入った割り算では,
① 割られる数が0なら,答えは0
② 割る数が0なら,答えはない*1
という,奇妙な現象が起こることになるわけですが,では,この場合はどうなるのでしょう?
「0÷0」
「もう付き合ってられるか!」
なんて読者の方が離れていく姿が目に浮かびますが,もう少しお付き合いください。(笑) 今度はちゃんと答えがありますから。
さて,これも先ほどのように,式を使って考えてみることにしましょう。
0÷0の答えは,次の式の( )に入る数と同じになります。
0×( )=0
さあ,答えは何でしょうか?
「・・・何でもいいのでは???」
と思ったあなた。大正解。答えは「どんな数でもよい」となります。*2
つまり,
0÷0=6
0÷0=100
0÷0=-7
などなど,全て正解ということになる*2わけです。
----------------------------------------------------------------------------
以上,
A÷0(ただし,Aは0以外)・・・答えなし
0÷0・・・何でも良い
ということを説明してきました*1*2が,どうもすっきりしないなァ,と思ってらっしゃる方も多いのではないでしょうか?
理屈の上では分かるんだけれども,感覚的にピンとこないというか。
そこで,小学生でも分かるような(多分・・・)説明をご用意しました。
【3÷0に答えがない理由】*1
3個のケーキを0個ずつに分けるということは,3個のケーキを目にも見えないくらい小さなサイズにみじん切りにするということだ。だから,いくつに分割できたかなんて,多すぎて数えられない*1。
【0÷0の答えが何でもよい理由】*2
目に見えないくらい小さな,ホコリのようなケーキのかけらがある。0を0で割るということは,このかけらを更に目に見えないくらいのサイズに分けるということだ。どうせ既に目に見えない位小さいのだから,この後これを2つに分けようが,3つに分けようが,100個に分けようが,見えないことに変わりはない。
どうでしょうか? ちょっとこじつけに近い説明ですかね?
高校で理系分野に進む人は,「数学3」という教科を学習するはずです。その中で,「極限」という分野を学べば,今回の話は納得がいくと思います。実は上に挙げた2つの(こじつけのような)説明も,極限という分野で高校生が大真面目に学習する内容を,噛み砕いて表現したものです。
高校生とか,理系とか,極限とか,何だか話のレベルが飛躍して驚いた方もいるかも知れませんが,0で何かを割る,ということは,それくらい深くて厄介な話なのです。
---------------------------------------------------------------------------
もう満腹,という方もいらっしゃるでしょうが,0は厄介だよ,という話をもう一つ。
「2」を2回掛け算すると,2×2で「4」になりますね。
「2」を3回掛け算すると,2×2×2で「8」。
「2」を6回掛け算すると,ちょっと計算が大変ですが,答えは「64」
「2」を1回掛け算すると,式がただの 2 となって,答えは「2」
では,「2」を0回掛け算するといくらになるでしょう?
お怒りの声が聞こえる前に,退散することに致します。
注釈
2 上記と同じく,代数的には「0÷0」の解は存在しませんが,この0を「限りなく0に近い数」と考えるとどうなるか,という発想で本文では話をしています。つまり,「x→0かつy→0のとき,x÷y→?」という考え方です。
この極限は,いわゆる「不定形」と呼ばれる形式になり,解が確定しません。例えば
x÷x2→0 6x÷x→6 100x2÷x2=100 -7x5÷x5=-7
のような具合です。割る数と割られる数が,どのような振る舞いで0に近づくかによって,極限は変わってきます。表現を変えれば,「0に近づくもの÷0に近づくもの」の極限は,一般にどんな値になるか分かりません。このことをもって,本文では「0÷0の答えは何でもよい」と書かせていただきました。
文末の「例え話」をもって,極限の考え方で解釈しているという意図が伝わるかと思っておりましたが,*1 と*2で代数・解析的な解釈を混在して記載してしまったため,数学的に飛躍のある,整合性のない表現となってしまいました。申し訳ありません。
再生核研究所声明199(2015.1.15) 世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0
ゼロ除算は 西暦628年インドでゼロが文献に記録されて以来、問題とされてきた。ゼロ除算とは、ゼロで割ることを考えることである。これは数学の基本である、四則演算、加法、減法、乗法、除法において、除法以外は何時でも自由にできるのに、除法の場合だけ、ゼロで割ることができないという理由で、さらに物理法則を表す多くの公式にゼロ除算が自然に現れていることもあって、世界各地で、今でも絶えず、問題にされていると考えられる。― 小学生でも どうしてゼロで割れないのかと毎年、いろいろな教室で問われ続いているのではないだろうか.
これについては、近代数学が確立された以後でも、何百年を越えて 永い間の定説として、ゼロ除算は 不可能であり、ゼロで割ってはいけないことは、初等教育から、中等、高校、大学そして学術界、すなわち、世界の全ての文献と理解はそうなっている。変えることのできない不変的な法則のように理解されていると考えられる。
しかるに2014年2月2日 ゼロ除算は、可能であり、ゼロで割ればゼロであることが、偶然発見された。その後の経過、背景や意味付け等を纏めてきた:
再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)―
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
ところが、気づいてみると、ゼロ除算は当たり前なのに、数学者たちが勝手に、割り算は掛け算の逆と思い込み、ゼロ除算は不可能であると 絶対的な真理であるかのように 烙印を押して、世界の人々も盲信してきた。それで、物理学者が そのために基本的な公式における曖昧さに困ってきた事情は ニュートンの万有引力の法則にさえ見られる。
さらに、誠に奇妙なことには、除算はその言葉が表すように、掛算とは無関係に考えられ、日本ばかりではなく西欧でも中世から除算は引き算の繰り返しで計算されてきた、古い、永い伝統がある。その考え方から、ゼロ除算は自明であると道脇裕氏と道脇愛羽さん6歳が(四則演算を学習して間もないときに)理解を示した ― ゼロ除算は除算の固有の意味から自明であり、ゼロで割ればゼロであるは数学的な真実であると言える(声明194)。数学、物理、文化への影響も甚大であると考えられる。
数学者は 数学の自由な精神で 好きなことで、考えられることは何でも考え、不可能を可能にし、分からないことを究め、真智を求めるのが 数学者の精神である。非ユークリッド幾何学の出現で 絶対は変わり得ることを学び、いろいろな考え方があることを学んできたはずである。そのような観点から ゼロ除算の解明の遅れは 奇妙な歴史的な事件である と言えるのではないだろうか。
これは、数学を超えた、真実であり、ゼロ除算は不可能であるとの 世の理解は間違っている と言える。そこで、真実を世界に広めて、人類の歴史を進化させるべきであると考える。特に声明176と声明185を参照。ゼロ除算は 堪らなく楽しい 新世界 を拓いていると考える。
以 上
再生核研究所声明200(2015.1.16) ゼロ除算と複素解析の現状 ―佐藤超関数論との関係が鍵か?
正確に次のように公開して複素解析とゼロ除算の研究を開始した:
特異点解明の歩み100/0=0,0/0=0 関係者:
複素解析学では、1/0として、無限遠点が存在して、美しい世界です。しかしながら、1/0=0 は 動かせない真実です。それで、勇気をもって進まざるを得ない:― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.
私には 無理かと思いますが、世の秀才の方々に 挑戦して頂きたい。空論に付き合うのはまっぴらだ と考える方も多いかと思いますが、面白いと考えられる方で、楽しく交流できれば幸いです。宜しくお願い致します。 添付 物語を続けたい。敬具 齋藤三郎
2014.4.1.11:10
上記で、予想された難問、 解析関数は、孤立特異点で確定値をとる、が 自分でも予想しない形で解決でき、ある種の実体を捉えていると考えたのであるが、この結果自体、世のすべての教科書の内容を変える事件であるばかりではなく、確立されている無限遠点の概念に 新しい解釈を与えるもので、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6月、帰国後、気に成っていた、金子晃先生の 30年以上前に購入した超函数入門の本に 極めて面白い記述があり、佐藤超関数とゼロ除算の面白い関係が出てきた。さらに 特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられているが、面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていることが分かった。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
現在まで、添付21ページの論文原稿について 慎重に総合的に検討してきた。
そこで、問題の核心、ゼロ除算の発展の基礎は、次の論点に有るように感じられてきた:
We can find many applicable examples, for example, as a typical example in A. Kaneko (\cite{kaneko}, page 11) in the theory of hyperfunction theory: for non-integers $\lambda$, we have
\begin{equation}
x_+^{\lambda} = \left[ \frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}\right] =\frac{1}{2i \sin \pi \lambda}\{(-x + i0)^{\lambda}- (-x - i0)^{\lambda}\}
\end{equation}
where the left hand side is a Sato hyperfunction and the middle term is the representative analytic function whose meaning is given by the last term. For an integer $n$, Kaneko derived that
\begin{equation}
x_+^{n} = \left[- \frac{z^n}{2\pi i} \log (-z) \right],
\end{equation}
where $\log$ is a principal value: $ \{ - \pi < \arg z < +\pi \}$. Kaneko stated there that by taking a finite part of the Laurent expansion, the formula is derived.
Indeed, we have the expansion, for around $ n$, integer
$$
\frac{-(-z)^{\lambda}}{2i \sin \pi \lambda}
$$
\begin{equation}
= \frac{- z^n}{2\pi i} \frac{1}{\lambda -n} - \frac{z^n}{2\pi i} \log (-z )
- \left( \frac{\log^2 (-z) z^n}{2\pi i\cdot 2!} + \frac{\pi z^n}{2i\cdot 3!}
\right)(\lambda - n) + ...
\end{equation}
(\cite{kaneko}, page 220).
By our Theorem 2, however, we can derive this result (4.3) from the Laurant expansion (4.4), immediately.
上記ローラン展開で、\lambda に n を代入したのが ちょうど n に対する佐藤の超関数になっている。それは、ゼロ除算に言う、 孤立特異点における解析関数の極における確定値である。これはゼロ除算そのものと殆ど等価であるから、ローラン展開に \lambda = n を代入した意味を、上記の佐藤超関数の理論は述べているので 上記の結果を分析すれば、ゼロ除算のある本質を捉えることができるのではないかと考えられる。
佐藤超関数は 日本で生まれた、基本的な数学で 優秀な人材を有している。また、それだけ高級、高度化しているが、このような初歩的、基本的な問題に関係がある事が明らかになってきた。そこで、佐藤超関数論の専門家の方々の研究参加が望まれ、期待される。また、関係者の助言やご意見をお願いしたい。
ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として示していることである。
以 上
0 件のコメント:
コメントを投稿