ピラミッドの「秘密」を解明する新たな調査が始動
2015年11月02日 19:37 発信地:カイロ/エジプト
科学・技術 Relaxnews
ピラミッドの「秘密」を解明する新たな調査が始動 写真拡大 ×スフィンクスとギザの大ピラミッド。(c)Relaxnews/Asier Villafranca 【メディア・報道関係・法人の方】写真購入のお問合せはこちら
【11月2日 Relaxnews】エジプト人と外国人で編成した専門家チームが先月25日、ピラミッドの秘密を解明する新たな調査を開始した。調査には4つのピラミッドの内部での未知の小部屋の捜索も含まれている。
エジプト、フランス、カナダ、日本の建築家や科学者らが、いずれもエジプトの首都カイロ(Cairo)の南に位置するギザ(Giza)とダハシュール(Dahshur)でそれぞれ2つのピラミッドを最新の赤外線技術と高性能レーダー探知機を用いて調査する。
エジプトのマムドゥフ・ダマティ(Mamduh al-Damaty)考古相は記者会見で、「特別チームはこれまでに発見されていない小部屋や秘密がまだあるかどうかを確認するためピラミッドを調査する」と述べた。これまでに考古学者や科学者らがピラミッドの謎を解明しようと数多くの調査を行ってきたが、そもそもどのようにしてピラミッドが建設されたのかについては依然として具体的な理論が導き出せずにいる。「スキャンピラミッド(Scan Pyramids)」と呼ばれるこの調査プロジェクトは2016年末まで続けられる予定。(c)Relaxnews/AFPBB News
http://www.afpbb.com/articles/-/3065190
\title{\bf Announcement 213: An interpretation of the identity $ 0.999999...... =1$
\author{{\it Institute of Reproducing Kernels}\\
\date{}
\maketitle
{\bf Abstract: } In this announcement, we shall give a very simple interpretation for the identity: $ 0.999999......=1$.
\bigskip
\section{ Introduction}
On January 8, 2008, Yuusuke Maede, 8 years old boy, asked the question, at Gunma University, that (Announcement 9(2007/9/1): Education for genius boys and girls):
What does it mean by the identity:
$$
0.999999......=1?
$$
at the same time, he said: I am most interesting in the structure of large prime numbers. Then, a teacher answered for the question by the popular reason based on the convergence of the series: $0.9, 0.99, 0.999,... $. Its answer seems to be not suitable for the 8 years old boy with his parents (not mathematicians). Our answer seems to have a general interest, and after then, such our answer has not been heard from many mathematicians, indeed.
This is why writting this announcement.
\medskip
\bigskip
\section{An interpretation}
\medskip
In order to see the essence, we shall consider the simplist case:
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + ... = 1.
\end{equation}
Imagine a tape of one meter length, we will give its half tape: that is,
\begin{equation}
\frac{1}{2}.
\end{equation}
Next, we will give its (the rest's half) half tape; that is, $\frac{1}{2}\cdot \frac{1}{2} = \frac{1}{2^2}$, then you have, altogether
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} .
\end{equation}
Next, we will give the last one's half (the rest's half); that is, $\frac{1}{2}\cdot \frac{1}{2} \cdot \frac{1}{2}= \frac{1}{2^3}$,
then, you have, altogether
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3}.
\end{equation}
By this procedure, you will be able to obtain the small tapes endressly. Imagine all the sum as in the left hand side of (2.1). However, we will see that this sum is just the division of the one meter tape. Therefore, we will be able to confim the identity (2.1), clearly.
The question proposed by Y. Maede is just the small change the ratio $\frac{1}{2}$ by $\frac{9}{10}$.
\bigskip
\section{ Conclusion}
Y. Maede asked the true sense of the limit in the series:
$$
0.999999.....
$$
that is, this series is approaching to 1; however, is it equal or not ? The above interpretation means that the infinite series equals to one and it is just the infinite division of one. By this inverse approarch, the question will make clear.
\medskip
\bigskip
\section{Remarks}
Y. Maede stated a conjecture that for any prime number $p$ $( p \geqq 7)$, for $1$ of $ - 1$
\begin{equation}
11111111111
\end{equation}
may be divided by $p$ (2011.2.6.12:00 at University of Aveiro, by skype)
\medskip
(No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf).
\medskip
This conjecture was proved by Professors L. Castro and Y. Sawano,
independently. Y. Maede gave later an interesting interpretation for his conjecture.
\medskip
(2015.2.26)
\end{document}
\title{\bf Announcement 214: Surprising mathematical feelings of a 7 years old girl
}
\author{{\it Institute of Reproducing Kernels}\\
\date{}
\maketitle
{\bf Abstract: } In this announcement, we shall give the two surprising mathematical feelings of 7 years old girl Eko Michiwaki who stated the division by 3 of any angle and the division by zero $100/0=0$ as clear and trivial ones. As well-known, these famous problems are historical, and her results will be quite original.
\bigskip
\section{ Introduction}
We had met, 7 years old girl, Eko Michiwaki on November 23, 2014 at Tokyo Institute of Technology and August 23, 2014 at Kusatu Seminor House, with our colleagues. She, surprisingly enough, stated there repeatedly the division by 3 of any angle and the division by zero $100/0=0$ as clear and trivial ones. As well-known, these famous problems are historical and her results will be quite original.
\section{The division of any angle by 3}
\medskip
Eko Michiwaki said:
divide a given angle with 4 equal angles; this is simly done. Next, we divide one divided angle
with 4 equal angles similarly and the three angles add to other 3 angles. By continuing this procedure, we will be able to obtain the division by 3 of any angle. Her idea may be stated mathematically as follows:
$$
\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + ... ...= \frac{1}{3}.
$$
However, her idea seems to be more clear than the above mathematical formula. For this sentence, see \cite{ann3} for the sense of the limit.
\bigskip
\section{The division by zero $100/0=0$}
\medskip
As we stated in \cite{ann1}, she stated that division by zero $100/0=0$ is clear and trivial for our recent results \cite{cs,kmsy,s,ttk}. The basic important viewpoint is that division and product are different concepts and the division by zero $100/0=0$ is clear and trivial from the own sense of the division, independently of product \cite{ann1}. From the viewpoint, our colleagues stated as follows:
\medskip
On July 11, 2014, Seiichi Koshiba and Masami Yamane said at
Gunma University:
The idea for the division of Hiroshi Michiwaki and Eko Michiwaki (6 years
old daughter) is that division and product are different concepts and they
were calculated independently for long old years, by repeated addition and
subtraction, respectively. Mathematicians made the serious mistake for very
long years that the division by zero is impossible by considering that division
is the inverse operation of product. The division by zero was, however, clear
and trivial, as z/0=0, from the own nature of division.
\medskip
On February 21, 2015, Seiichi Koshiba and Masami Yamane visited our Institute and we confirmed this meaning of these sentences and the basic idea on the division by zero.
\medskip
(2015.2.27)
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances inLinear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95.http://www.scirp.org/journal/ALAMT/
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics (in press).
\bibitem{ann1}
Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.
\bibitem{ann2}
Announcement 185: The importance of the division by zero $z/0=0$, Institute of Reproducing Kernels, 2014.11.28.
\bibitem{ann3}
Announcement 213: An interpretation of the identity $ 0.999999...... =1$, Institute of Reproducing Kernels, 2015.2.26.
\end{thebibliography}
\end{document}
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 247: The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$}
\author{{\it Institute of Reproducing Kernels}\\
\date{September 22, 2015}
\maketitle
In Announcement 246, we stated:
\medskip
Consider the lines $y = ax$ with gradients $a$ through the origin $ 0$. Consider the two limits that $a \quad (>0)$ tends to $ + \infty$ and $a \quad (<0)$ tends to $- \infty$, respectively. As their limits, we see that the limiting lines are $y$ — axis. Note that the gradient of the $y$ axis is zero, not infinity.
This example shows as in the graph of the function $y = f(x) = 1/x$ at $x = 0$ as $f(0) =0$, that was introduced by the division by zero $1/0=0$ mathematically (\cite{s,kmsy,ttk,ann}).
\medskip
For this announcement, Professor H. Begehr kindly referred to the gradient of the $y$ axis in the above: If the gradient of the imaginary axis is $0$ this would mean $\tan (\pi/2)=0$,
right? Of course this would be a consequence of $1/0=0$!
\medskip
We had sent the e-mail, soon as follows:
\medskip
For the gradient of $y$ axis, we can define it as zero, very naturally and in the intuitive sense; of course, we can give its definition precisely.
However, as you stated, we can derive it formally by the division by zero $1/0=0$; this deduction will be very interested in itself, because, the formal result $1/0=0$ is coincident with the natural sense.
\medskip
The gradients of y axis and x axis are both zero.
\medskip
Surprisingly enough, this would mean $\tan (\pi/2)=0$,
right?
THIS IS RIGHT for our sense; we gave the definition of the values for analytic functions at an isolated singular point:
\medskip
{\bf Theorem :} {\it Any analytic function takes a definite value at an isolated singular point }{\bf with a natural meaning.} The definite value is given by the first coefficient of the regular part in the Laurent expansion around the isolated singular point (\cite{ann}).
\medskip
As the fundamental results, we would like to state that
\medskip
{\huge \bf I) The gradient of the y axis is zero,}
\medskip
and
\medskip
{\huge \bf II) $\tan \frac{\pi}{2} = 0,$}
\medskip
in the sense of the division by zero in our sense.
\medskip
Note that the function $y = \tan x$ is similar with the function $y = 1/x$ around $x = \frac{\pi}{2}
$ and $ x = 0$, respectively.
\footnotesize
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields, Tokyo Journal of Mathematics (in press).
\bibitem{ann}
Announcement 185: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.
\end{thebibliography}
\end{document}
0 件のコメント:
コメントを投稿