2015年11月28日土曜日

Dividing by Nothing by Alberto Martinez

Dividing by Nothing

by Alberto Martinez

imageIt is well known that you cannot divide a number by zero. Math teachers write, for example, 24 ÷ 0 = undefined. They use analogies to convince students that it is impossible and meaningless, that “you cannot divide something by nothing.” Yet we also learn that we can multiply by zero, add zero, and subtract zero. And some teachers explain that zero is not really nothing, that it is just a number with definite and distinct properties. So, why not divide by zero? In the past, many mathematicians did.

In 628 CE, the Indian mathematician and astronomer Brahmagupta claimed that “zero divided by a zero is zero.” At around 850 CE, another Indian mathematician, Mahavira, more explicitly argued that any number divided by zero leaves that number unchanged, so then, for example, 24 ÷ 0 = 24. Later, around 1150, the mathematician Bhaskara gave yet another result for such operations. He argued that a quantity divided by zero becomes an infinite quantity.image This idea persisted for centuries, for example, in 1656, the English mathematician John Wallis likewise argued that 24 ÷ 0 = ∞, introducing this curvy symbol for infinity. Wallis wrote that for ever smaller values of n, the quotient 24 ÷ n becomes increasingly larger (e.g., 24 ÷ .001 = 24,000), and therefore he argued that it becomes infinity when we divide by zero.

The common attitude toward such old notions is that past mathematicians were plainly wrong, confused or “struggling” with division by zero. But that attitude disregards the extent to which even formidably skilled mathematicians thoughtfully held such notions.In particular, the Swiss mathematician, Leonhard Euler, is widely admired as one of the greatest mathematicians in history, having made extraordinary contributions to many branches of mathematics, physics, and astronomy in hundreds of masterful papers written even during his years of blindness. Euler’s Complete Introduction to Algebra (published in German in 1770) has been praised as the most widely published book in the history of algebra. We here include the pages, in German and from an English translation, in which Euler discussed division by zero. He argued that it gives infinity.

Euler_German
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
Euler_Algebra_1810
Title page of an English edition of Euler’s Algebra, published in 1810 (translated from a French translation of the German original), and Article 83, p. 34, with footnote additions.
A common and reasonable view is that despite his fame, Euler was clearly wrong because if any number divided by zero gives infinity, then all numbers are equal, which is ridiculous. For example:

if 3 ÷ 0 = ∞, and 4 ÷ 0 = ∞,

then ∞ x 0 = 3, and ∞ x 0 = 4.

Here, a single operation, ∞ x 0, has multiple solutions, such that apparently 3 = 4. This is absurd, so one might imagine that there was something “pre-modern” in Euler’s Algebra, that the history of mathematics includes prolonged periods in which mathematicians had not yet found the right answer to certain problems. However, Euler had fair reasons for his arguments. Multiple solutions to one equation did not seem impossible. Euler argued, for one, that the operation of extracting roots yields multiple results. For example, the number 1 has three cube roots, any of which, multiplied by itself three times, produces 1. Today all mathematicians agree that root extraction can yield multiple results.

So why not also admit multiple results when multiplying zero by infinity?

An alternate way to understand the historical disagreements over division by zero is to say that certain mathematical operations evolve over time. In antiquity, mathematicians did not divide by zero. Later, some mathematicians divided by zero, obtaining either zero or the dividend (e.g., that 24 ÷ 0 = 24). Next, other mathematicians argued, for centuries, that the correct quotient is actually infinity. And nowadays again, mathematicians teach that division by zero is impossible, that it is “undefined.” But ever since the mid-1800s, algebraists realized that certain aspects of mathematics are established by convention, by definitions that are established at will and occasionally refined, or redefined. If so, might the result of division by zero change yet again?

In 2005, I showed students at UT how the computer in our classroom, an Apple iMac, carried out division. I typed 24 ÷ 0, then the enter key. The computer replied “infinity!” Strange that it included an exclamation mark. Some students complained that the computer was an Apple instead of a Windows PC. The following year, a similar Apple computer, a newer model, also answered “infinity,” but without the exclamation mark. In 2010, the same operation on a newer computer in the classroom replied: “DIV BY ZERO.” Yet that same computer has an additional calculator, a so-called scientific calculator, and the same operation on this more sophisticated calculator gave “infinity.” image image

Students’ calculators, such as in their cell phones, gave other results: “error,” or “undefined.” One student’s calculator, a Droid cell phone, answered: “infinity.” None of these answers is an accident, each has been thoughtfully programmed into each calculator by mathematically trained programmers and engineers. Computer scientists confront the basic and old algebraic problem: using variables and arithmetical operations, occasionally computers encounter a division in which the divisor has a value of zero—what should computers do then? Stop, break down?

On 21 September 1997, the USS Yorktown battleship was testing “Smart Ship” technologies on the coast of Cape Charles, Virginia. At one point, a crew member entered a set of data that mistakenly included a zero in one field, causing a Windows NT computer program to divide by zero. This generated an error that crashed the computer network, causing failure of the ship’s propulsion system, paralyzing the cruiser for more than a day.

These issues show that we are unjustified in assuming that we are lucky enough to live in an age when all the basic operations of mathematics have been settled, when the result of division by zero in particular cannot change again. Instead, when we look at pages from old math books, such as Euler’s Algebra, we should be reminded that some parts of mathematics include operations and concepts involving ambiguities that admit reasonable disagreements. These are not merely mistakes, but instead, plausible alternative directions that mathematics has previously taken and still might take. After all, other operations that seemed impossible for centuries, such as subtracting a greater number from a lesser, or taking roots of negative numbers, are now common. In mathematics, sometimes the impossible becomes possible, often with good reason.

Want to know more about negative numbers?
Alberto A. Martinez, Negative Math: How Mathematical Rules Can Be Positively Bent
https://notevenpast.org/dividing-nothing/


\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}


\numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 258: A new viewpoint of the division by zero $z/0=0$ from area and the point at infinity
}

\author{{\it Institute of Reproducing Kernels}\\
}

\date{November 26, 2015}

\maketitle
{\bf Abstract: } In this announcement, we will state a reality of the division by zero $z/0=0$ from the viewpoint of area and the point at infinity. We will be able to see a great impact for the idea of our space. 

\bigskip
{\bf Introduction}

\bigskip

%\label{sect1}
By {\bf a natural extension of the fractions}
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, the division by zero
\begin{equation}
\frac{b}{0}=0, 
\end{equation}
is clear and trivial. See (\cite{msy}) for the recent results. See also the survey style announcements 179,185,237,246,247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252}). The division by zero is not only mathematical problems, but also it will give great impacts to human beings and the idea on the universe. The Institute of Reproducing Kernels is presenting various opinions in Announcements (many in Japanese) on the universe.

In this Announcement, we will refer to a new viewpoint of the division by zero in the Euclidean space from area and the point at infinity. In our common level, the results will be very surprized for many peopule.

\section{The point at infinity}

We will be able to see the whole Euclidean plane by the stereographic projection onto the Riemann sphere. The behavior of the space around the point at infinity may be considered by that around the origin by the linear transform $W = 1/z$(\cite{ahlfors}). We thus see that

\begin{equation}
\lim_{z \to \infty} z = \infty,
\end{equation}
however,
\begin{equation}
[z]_{z =\infty} =0,
\end{equation}
by the division by zero. The difference of (1.1) and (1.2) is very important as we see clearly from the function $1/z$ and the behavior at the origin. The limiting value to the origin and the value at the origin are different. For the surprising results, we will state the property in the real space as follows:
\begin{equation}
\lim_{x\to +\infty} x =+\infty , \quad \lim_{x\to -\infty} x = -\infty,
\end{equation}
however,
\begin{equation}
[x]_{ +\infty } =0, \quad [x]_{ -\infty } =0.
\end{equation}

\section{Interpretation by area}

In orde to see some realization of the properties of (1.3) and (1.4), we will consider the triangle with the basic edge (side) $a$ and high $h$. Then, the area $S$ of the triangle is given
by
\begin{equation}
S = \frac{1}{2} ah.
\end{equation}
By fixing the high $h$ and the line containing the side $a$, we will consider the limit $a \to +\infty$. Then, of course,
\begin{equation}
\lim_{a \to +\infty} S = +\infty.
\end{equation}
However, we will see that
\begin{equation}
[S]_{a=\infty} =0,
\end{equation} 
just like the division by zero, because, when $a=\infty$, the triangle is broken,
we cannot consider the area of the triangle. Here, the notation $a=\infty$ is not good, however, its meaning is clear; it will mean the case of the parallel lines of the line containing the side $a$ and the line through the fixed vertex of the triangles when we consider $a$ tends to $+\infty$. 

The strong discontinuity of the division by zero is appeared as the broken of the triangles.
These phenomena may be looked in many situations as the unverse one.
We can consider similar problems for many types volumes. However, the simplest cases are
disc and sphere (ball) with radius $1/R$. When $R \to +0$, the areas and volumes tend to $+\infty$, however, when $R=0$, they are zero, because they become the half-plane and half-space, respectively.

\bigskip

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{ahlfors}
Ahlfors, L. V. (1966). {\it Complex Analysis}. McGraw-Hill Book Company.

\bibitem{bht}
Bergstra, J. A., Hirshfeld Y., \& Tucker, J. V. (2009).
{\it Meadows and the equational specification of division} (arXiv:0901.0823v1[math.RA] 7 Jan) .

\bibitem{cs}
Castro, L. P., \& Saitoh, S. (2013).
Fractional functions and their representations. {\it Complex Anal. Oper. Theory {\bf7}, no. 4, }1049-1063. 

\bibitem{kmsy}
Kuroda, M., Michiwaki, H., Saitoh, S.,\& Yamane, M. (2014).
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
{\it Int. J. Appl. Math. Vol. 27, No 2 }, 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
Michiwaki H., Saitoh S., \& Yamada M. (2015).
Reality of the division by zero $z/0=0$. IJAPM (International J. of Applied Physics and Math. (to appear).

\bibitem{mst}
Michiwaki, H., Saitoh, S., \& Takagi, M.
A new concept for the point at infinity and the division by zero z/0=0 
(manuscript).

\bibitem{s}
Saitoh, S. (2014).
Generalized inversions of Hadamard and tensor products for matrices,
{\it Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 , 87-95.} http://www.scirp.org/journal/ALAMT/ 

\bibitem{taka}
Takahasi, S.-E. (2014).
{On the identities $100/0=0$ and $ 0/0=0$.}
(note)

\bibitem{ttk}
Takahasi, S.-E., Tsukada, M., \& Kobayashi, Y. (2015).
{\it Classification of continuous fractional binary operations on the real and complex fields. } Tokyo Journal of Mathematics {\bf 8}, no.2(in press).

\bibitem{ann179}
Division by zero is clear as z/0=0 and it is fundamental in mathematics. {\it Announcement 179 (2014.8.30).}

\bibitem{ann185}
The importance of the division by zero $z/0=0$. {\it Announcement 185 (2014.10.22)}.

\bibitem{ann237}
A reality of the division by zero $z/0=0$ by geometrical optics. {\it Announcement 237 (2015.6.18)}.

\bibitem{ann246}
An interpretation of the division by zero $1/0=0$ by the gradients of lines. {\it Announcement 246 (2015.9.17)}.

\bibitem{ann247}
The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$. {\it Announcement 247 (2015.9.22)}.

\bibitem{ann250}
What are numbers? - the Yamada field containing the division by zero $z/0=0$. {\it Announcement 250 (2015.10.20)}.

\bibitem{ann252}
Circles and curvature - an interpretation by Mr. Hiroshi Michiwaki of the division by
zero $r/0 = 0$. {\it Announcement 252 (2015.11.1)}.

\end{thebibliography}



\end{document}


再生核研究所声明257 (2015.11.05) 無限大とは何か、 無限遠点とは何か ー 新しい視点 
(道脇さんたちの、和算の伝統を感じさせるような、何とも 言えない魅力 がありますね。 添付のように完成させたい。例の専門家たち、驚いて対応を検討しているのでは?どんどん、事情がみえてきました. 今朝の疑問も きれいに散歩中 8時15分 ころ、解決できました.成文化したい。2015.11.1.9:7
無限遠点の値の意味を 約1年半ぶりに 神は関数値を平均値として認識する で 理解できました。今、気になるのは,どうして、正の無限 負の無限、および ゼロが近いのかです。その近いという意味を、 正確に理解できない。 近い事実は 添付する 電柱の左右の傾きに現れている。
log 0=0
と定義するのが 自然ですが、それには、 ゼロと マイナス無限大 が一致しているとも言える。 そのところが 不明、何か新しい概念、考え 哲学が 求められている???
2015.11.1.05:50)

ローラン展開の正則部の値の解釈のように(再生核研究所声明255 (2015.11.03) 神は、平均値として関数値を認識する)、実は当たり前だったのに、認識がおかしかったことに気づいたので、正確に表現したい。
まず、正の無限大とは何だろうか。 1,2,3,…… といけば、正の整数は 正の無限大に収束、あるいは発散すると表現するだろう。 この正確な意味は イプシロン、デルタ論法という表現で厳格に表現される。すなわち、 どんなに大きな 整数 n をとっても、あるN を取れば(存在して)、N より大の 全ての整数 m に対して、n < m が成り立つと定義できる。 いろいろな設定で、このようにして、無限は定義できる。 どんなに大きな数に対しても、より大の整数が存在する。 それでは、+∞ とは何だろうか。 限りなく大きな数の先を表す概念であることが分かる。 大事な視点は +∞は 定まった数ではなくて、極限で考えられたもので、近づいていく先を表した状況で考えられていることである。 これらの概念は極限の概念として、現代数学で厳格に定義され、その概念は新しいゼロ除算の世界でも、全て適切で、もちろん正しい。
簡単な具体例で説明しよう。 関数y=1/x のグラフはよく知られているように、正の実軸からゼロに近づけば、+∞に発散し、負からゼロに近づけば、-∞に発散する。 ところが、原点では、既に述べてきたように、その関数値はゼロである。 この状況を見て、0、+∞、-∞ らが近い、あるいは 一致していると誤解してはならない。+∞、-∞  らは数ではなく、どんどん大きくなる極限値や、どんどん小さくなる極限値を表しているのであって、それらの先、原点では突然にゼロにとんでいる 強力な不連続性を示しているのである。
複素解析における無限遠点も同様であって、立体射影で複素平面はリーマン球面に射影されるが、無限遠点とは あらゆる方向で原点から限りなく遠ざかった時に、想像上の点が存在するとして、その射影としてりーマン球面上の北極を対応させる。 関数W=1/z は原点でその点が対応すると、解析関数論では考え、原点で一位の極をとると表現してきた。
しかしながら、新しく発見されたゼロ除算では、1/0=0 であり 原点には、ゼロが対応すると言っている。 これは矛盾ではなくて、上記、一位の極とは、原点に近づけは、限りなく無限遠点に近づく、あるいは発散するという、従来の厳格議論はそのままであるが、ゼロ除算は、原点自身では、数としてゼロの値をきちんとして取っているということである。 この区別をきちんとすれば、従来の概念とゼロ除算はしっかりとした位置づけができる。 近づく値とそこにおける値の区別である。

以 上

再生核研究所声明251(2015.10.27) 円と曲率 ―ゼロ除算z/0=0から導かれる道脇裕氏の解釈
(再生核研究所は ゼロ除算の研究を推進している。特に研究は初期段階にあるので ゼロ除算の実在感の観点からの考察を進めている。そのような折り、道脇裕氏が2015.9.3. 付け文書を送って来たので、要点を纏めて置きたい。)

底円の半径がr_2である直円錐を考える。 それを半径r_1 の底円に平行な円で切る。2つの円板の間の距離をdとする。 このとき、直円錐の頂点と底円板の間の 直円錐の表面上での 距離RはEM半径と呼ばれ、道脇愛羽(8歳)さん が計算され、

R=r_2/(r_2-r_1 ) √(d^2+(r_2-r_1 )^2 )

となる。これは2つの円板で囲まれた部分の 平面上での回転を考えたときに、底円が描く円の半径を計算されたものである。
半径Rの円の曲率はK=K(R)=1/Rで定義される。いま、r_1 がr_2 に近づいた場合を考える。もちろん、d を一定にしてである。まず、極限値を考えれば、Rは無限大に発散して、底円が描く円は 直線に近づき、実際、r_1 = r_2の時は 底円が描く円は直線になり、回転体は直線運動を行うことが分かる。
ところがゼロ除算は、r_1 =r_2のとき、Rがゼロであることを言っているが、それは、何を意味するだろうか。ゼロ除算は K=K(R)=1/R がR=0 でゼロと言っているから、その時の曲率がゼロ、すなわち、極限の場合と同様に、底円が描く円は直線になり、回転体は直線運動を行うことを述べている。
いまの場合、極限で考えた極限値とゼロ除算、すなわち、R=0自身の結果が同じことを述べている。
この現象は、ゼロ除算が現実の現象を良く表現しているものと考えられる。

同時に、半径ゼロの円(点)の曲率がゼロである ことをよく、表している。
上記、回転体の運動の例は、ゼロ除算の強力な不連続性をよく捉えたものとして、大変面白いのではないだろうか。

以 上


再生核研究所声明249(2015.10.20)数とは何か ― ゼロ除算z/0=0を含む
(数とは、ゼロ除算z/0=0を含む 山田正人 体の元のことである:
2015.10.16.07:30 小雨の中、興奮しながら散歩していた。 その時、 上記のような直観が確信をもって、熱く閃いた。複素数体に対して、山田体を広く用いるべきである。 そこでは、例外なく逆数が定義され、言わば完備化空間のように完全になり、ゼロ除算の世界が拓かれてくる。
2015.10.16.08:12)

ゼロ除算z/0=0は 分数の自然な拡張として既に1+1=2のように自明であり、しかもそれは、我々の数学そのものであり、自然現象もきちんと表している。しかしながら、永い間の偏見の世界史、それも千年を超える偏見であり、天才的な数学者たちの足跡を省みて、中々世の中で理解されない状況があるのは、世の関係サイトを見ても良く分かる。それらには、そもそもゼロに対する恐怖心とゼロ除算にからむ、不可思議で奇妙な論調を見ることができる。
ゼロ除算のこのような歴史は、やがて人類の愚かさの象徴であると世界史で記録されるだろう。
1/0 とは何だと、恐怖心を抱く者は 尚世に多い状態と言える。公理論的に吟味したか、現代数学とは違う、変な世界の数学ではないか、数学的に正しくともそのような変な数学が大きな意味を持つはずがない等と 特に優秀な人たちが述べて来たのは大変興味深い事実である。
最近、数学基礎論、公理論、計算機科学の専門家たちのゼロ除算に関する論文を発見した
Meadows and the equational specification of division
J A Bergstra,Y Hirshfeld and J V Tucker
が、結論ではとにかく、奇妙なことが書かれている(arXiv:0901.0823v1[math.RA] 7 Jan 2009)。
文献を見れば、彼らが相当な専門家であることが分かる。― 上記は要するにゼロ除算を含むいろいろな公理系を建設できるが、幻のようであるが計算に役立つと言っているようである。 きちんと書かれているのは、ゼロ除算が可能であるとは 主張しない ということである。
しかるに、我々はゼロ除算が可能であり、ゼロ除算は我々の数学そのものであると言っている。我々の本質的な原理は、ゼロ除算z/0=0は定義そのものであり、そのように定義し、導入することによって、数学は完全になり、新しい世界を拓くと言っている。いろいろな証拠を挙げて、解説してきた。
しかしながら、それでもなお、1/0 とは何ものかという、思いが残っているかも知れない。 それは数と言えるのだろうかなどの雑念が残っているかも知れない。
このような折り、2015.10.3.山田正人氏が研究室を訪れ、上記の論文とともに氏の考えを夢中で討論した。そのときは、2人ともそんなには気にしなかったのであるが、山田氏は、ゼロ除算を含む 体の構造を入れる方法を説明された。 体とは、四則演算が自由にできる 数学の述語で、 言わば数の資格もつ性質を表している。こうなると、ゼロ除算z/0は代数的にも堂々と数であると言明できることになる。
念を押したいのは、ゼロ除算z/0=0とは定義そのものであり、その定義で、全ての理論は現代数学の中で、新しい世界を展開できるということである。
実際、山田氏の上記の理論から、新しい結果は、何一つ得られない、数学の内容としては自明なものばかりである。
しかしながら、引用された上記論文や、体の概念の重要性から、山田氏の発見された体は 極めて重要であり、数とは 山田氏の発見された体の元、そのものである と言える。
山田氏の発見された、体の構造とは簡単であるが、新規な面白い概念を含んでいるので、内容は 当分は未公開としたい。
極めて面白いのは、y軸の勾配がゼロであるという知見をゼロ除算の帰結として得ていたが、山田氏の上記の考えは、そのことの帰結を微妙な論理で同様に導いている事実である。山田氏の考えには新しい世界観があるのは確かであると言える。
以上

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 247: The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$}

\author{{\it Institute of Reproducing Kernels}\\


\date{September 22, 2015}

\maketitle
In Announcement 246, we stated:

\medskip
Consider the lines $y = ax$ with gradients $a$ through the origin $ 0$. Consider the two limits that $a \quad (>0)$ tends to $ + \infty$ and $a \quad (<0)$ tends to $- \infty$, respectively. As their limits, we see that the limiting lines are $y$ — axis. Note that the gradient of the $y$ axis is zero, not infinity.
This example shows as in the graph of the function $y = f(x) = 1/x$ at $x = 0$ as $f(0) =0$, that was introduced by the division by zero $1/0=0$ mathematically (\cite{s,kmsy,ttk,ann}).
\medskip

For this announcement, Professor H. Begehr kindly referred to the gradient of the $y$ axis in the above: If the gradient of the imaginary axis is $0$ this would mean $\tan (\pi/2)=0$,
right? Of course this would be a consequence of $1/0=0$!
\medskip

We had sent the e-mail, soon as follows:
\medskip

For the gradient of $y$ axis, we can define it as zero, very naturally and in the intuitive sense; of course, we can give its definition precisely.
However, as you stated, we can derive it formally by the division by zero $1/0=0$; this deduction will be very interested in itself, because, the formal result $1/0=0$ is coincident with the natural sense.
\medskip

The gradients of y axis and x axis are both zero.
\medskip

Surprisingly enough, this would mean $\tan (\pi/2)=0$,
right?
THIS IS RIGHT for our sense; we gave the definition of the values for analytic functions at an isolated singular point:

\medskip
{\bf Theorem :} {\it Any analytic function takes a definite value at an isolated singular point }{\bf with a natural meaning.} The definite value is given by the first coefficient of the regular part in the Laurent expansion around the isolated singular point (\cite{ann}).
\medskip

As the fundamental results, we would like to state that

\medskip
{\huge \bf I) The gradient of the y axis is zero,}
\medskip

and
\medskip

{\huge \bf II) $\tan \frac{\pi}{2} = 0,$}
\medskip

in the sense of the division by zero in our sense.
\medskip

Note that the function $y = \tan x$ is similar with the function $y = 1/x$ around $x = \frac{\pi}{2}
$ and $ x = 0$, respectively.

\footnotesize
\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields, Tokyo Journal of Mathematics (in press).

\bibitem{ann}
Announcement 185: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.

\end{thebibliography}

\end{document}


再生核研究所声明199(2015.1.15) 世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0

ゼロ除算は 西暦628年インドでゼロが文献に記録されて以来、問題とされてきた。ゼロ除算とは、ゼロで割ることを考えることである。これは数学の基本である、四則演算、加法、減法、乗法、除法において、除法以外は何時でも自由にできるのに、除法の場合だけ、ゼロで割ることができないという理由で、さらに物理法則を表す多くの公式にゼロ除算が自然に現れていることもあって、世界各地で、今でも絶えず、問題にされていると考えられる。― 小学生でも どうしてゼロで割れないのかと毎年、いろいろな教室で問われ続いているのではないだろうか.

これについては、近代数学が確立された以後でも、何百年を越えて 永い間の定説として、ゼロ除算は 不可能であり、ゼロで割ってはいけないことは、初等教育から、中等、高校、大学そして学術界、すなわち、世界の全ての文献と理解はそうなっている。変えることのできない不変的な法則のように理解されていると考えられる。

しかるに2014年2月2日 ゼロ除算は、可能であり、ゼロで割ればゼロであることが、偶然発見された。その後の経過、背景や意味付け等を纏めてきた:

再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)― 
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について

ところが、気づいてみると、ゼロ除算は当たり前なのに、数学者たちが勝手に、割り算は掛け算の逆と思い込み、ゼロ除算は不可能であると 絶対的な真理であるかのように 烙印を押して、世界の人々も盲信してきた。それで、物理学者が そのために基本的な公式における曖昧さに困ってきた事情は ニュートンの万有引力の法則にさえ見られる。
さらに、誠に奇妙なことには、除算はその言葉が表すように、掛算とは無関係に考えられ、日本ばかりではなく西欧でも中世から除算は引き算の繰り返しで計算されてきた、古い、永い伝統がある。その考え方から、ゼロ除算は自明であると道脇裕氏と道脇愛羽さん6歳が(四則演算を学習して間もないときに)理解を示した ― ゼロ除算は除算の固有の意味から自明であり、ゼロで割ればゼロであるは数学的な真実であると言える(声明194)。数学、物理、文化への影響も甚大であると考えられる。
数学者は 数学の自由な精神で 好きなことで、考えられることは何でも考え、不可能を可能にし、分からないことを究め、真智を求めるのが 数学者の精神である。非ユークリッド幾何学の出現で 絶対は変わり得ることを学び、いろいろな考え方があることを学んできたはずである。そのような観点から ゼロ除算の解明の遅れは 奇妙な歴史的な事件である と言えるのではないだろうか。
これは、数学を超えた、真実であり、ゼロ除算は不可能であるとの 世の理解は間違っている と言える。そこで、真実を世界に広めて、人類の歴史を進化させるべきであると考える。特に声明176と声明185を参照。ゼロ除算は 堪らなく楽しい 新世界 を拓いていると考える。
以 上

1+0=1 1ー0=0 1×0=0  では、1/0・・・・・・・・・幾つでしょうか。
0???  本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・

1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)

ゼロ除算は、不可能であると誰が最初に言ったのでしょうか・・・・

7歳の少女が、当たり前であると言っているゼロ除算を 多くの大学教授が、信じられない結果と言っているのは、まことに奇妙な事件と言えるのではないでしょうか。

割り算を掛け算の逆だと定義した人は、誰でしょう???

世界中で、ゼロ除算は 不可能 か 
可能とすれば ∞  だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。

小学校以上で、最も知られている数学の結果は何でしょうか・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
https://www.pinterest.com/pin/234468724326618408/

原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・


無限遠点は存在するが、無限大という数は存在しない・・・・

加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849/a37209195?sort=1&fr=chie_my_notice_canso

0×0=0・・・・・・・・・だから0で割れないと考えた。

アラビア数字の伝来と洋算 - tcp-ip

http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf
明治5年(1872)

地球平面説→地球球体説
天動説→地動説
1/0=∞ 若しくは未定義 →1/0=0
地球人はどうして、ゼロ除算1300年以上もできなかったのか?  2015.7.24.9:10 意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。 生態系では、人類が がん細胞であった とならないとも 限らないのでは?

ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように

ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_

地球平面説→地球球体説
地球が丸いと考えた最初の人-ピタゴラス
地球を球形であることを事実によって証明しようとした人-マゼラン
地球を球形と仮定して初めて地球の大きさを測定した人-エラトステネス
天動説→地動説 アリスタルコス=ずっとアリストテレスやプトレマイオスの説が支配的だったが、約2,000年後にコペルニクスが再び太陽中心説(地動説)を唱え、発展することとなった。https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AA%E3%82%B9%E3%82%BF%E3%83%AB%E3%82%B3%E3%82%B9 …
何年かかったでしょうか????

1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????


地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか???


1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか???

ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997










0 件のコメント:

コメントを投稿