2015年11月23日月曜日

【朗報】やっぱりか!「数学苦手」は病気であることが判明!しかも治療可能 海外ニュース おすすめ math_fear_header3182053973

【朗報】やっぱりか!「数学苦手」は病気であることが判明!しかも治療可能
海外ニュース
おすすめ
math_fear_header3182053973

この度、脳神経科学の研究において、数学が子供の脳の中で恐怖に関する神経回路を刺激しているという新しい研究結果が発表された。数学恐怖症はただの好き嫌いではない、脳のメカニズムを解明し、数学恐怖症を治癒した検査の結果を大公開!




ー恐怖に関する神経回路が活発になる数学恐怖症


長い休みが終わり、新学期が始まる頃、数学の授業が始まるのが嫌でしょうがなかったという人がいるかもしれない。しかしそれは単なる好き嫌いではなく、れっきとした「恐怖症」という心理学的および生理学的な症状であると、科学ジャーナル紙「The Journal of Neuroscience」に発表された。また、教師らはこの「数学恐怖症」に対し、他の恐怖症の同様に、子供たちに一対一で治療と指導を行うべきと同紙では述べられている。

スタンフォード大学で行われた検査では、30人の3年生(8歳児)を対象に数学のテストを行い、その間の脳の様子を調べた。検査の結果、数名の子供は明らかに脳が恐怖状態を表していた。その後、数学および恐怖症治療の両方の見識を持った指導員により8週間のトレーニングを行い、再度検査をすると、恐怖症状は少なくなるかまたは全くない状態にまで改善された。「数学恐怖症」は治癒することがわかったのだ。

「数学恐怖症」は実は深刻かつ長期にわたり、重大な影響を及ぼすと考えれている。一般的に小学校で算数が得意だった子供は高校でも良い成績を収め、その後の人生にも良い影響がでると言われている。

恐怖症の原因については解明されていないが、少なくとも実際に恐怖を感じていること、また適切な治療法により、恐怖症が治癒することがわかってきた。長年に渡り、心理学者は、安全な支援環境がある中で、まったく恐怖を感じていない人の指導により恐怖心と対面することが、恐怖心を克服する効果的な方法であると明言してきた。

この方法は閉所恐怖症などの一般的な恐怖症の治療方法と全く同じことから、数学恐怖症もそれらの恐怖症と同様に脳が恐怖を感じていることから起こる症状だということだ。「数学恐怖症」は案外軽く見られているため、そのうち治ると思われがちだが、実は多くの人が大人になっても克服できていないという状況があるという。

あなたは「数学恐怖症」、克服できていますか?


ー海外の反応


・数学恐怖症?単に答えを間違ったことで他人にバカにされて、自分がなんの価値もないって思われるのが怖いだけなんじゃないの?
・昔クラスで数学の答えを間違うとみんなで笑ったりしてた。先生もそうだった。そういう事が原因なんじゃないの?
・うちの娘がこの状況。学習障害かと思って検査したら、数学恐怖症と診断された。学校も協力的で娘は治るって信じてる。
・だから私は教師になりたい。数学は怖がるものじゃないよ。
・これが数学をやらない言い訳にならないといいけど。
・信じられないね。数学が嫌い→数学が怖くなる→数学をやらなくなるという悪循環のせい。練習したり勉強したりすることで解決できるのでは?
・もう33歳だけど、私はまだ数学恐怖症の「子供たち」の中の1人だよ・・・。
・ずっと誰かに聞きたかった事。私も同じ経験がある。両親は全然助けてくれなかったし、先生には言えなかった。
・ニューヨークの小学校には算数の補習クラスがあって、1年半に渡ってゆっくりと指導してくれる。これが凄く助けになったよ。
・数学のせいじゃなく、社会や文化のせいである気がする。
・ほんとうに数学が苦手。今学期も全然数学の授業に出なかった、なんでかっていうと数学恐怖症だから!
・計算障害とは違うの?
・そんなに驚くこと?苦手なことが怖いのはみんな同じじゃない?
・心理学専攻の私としては、この記事は高く評価できる!
・数学の宿題する時はいつもパニくってた。
掲載元
https://www.reddit.com/r/todayilearned/comments/3t5c7h/til_some_children_have_such_a_legitimate_fear_of/

(ライター:南ロココ)http://www.yukawanet.com/archives/4968401.html

再生核研究所声明257 (2015.11.05) 無限大とは何か、 無限遠点とは何か ー 新しい視点 
(道脇さんたちの、和算の伝統を感じさせるような、何とも 言えない魅力 がありますね。 添付のように完成させたい。例の専門家たち、驚いて対応を検討しているのでは?どんどん、事情がみえてきました. 今朝の疑問も きれいに散歩中 8時15分 ころ、解決できました.成文化したい。2015.11.1.9:7
無限遠点の値の意味を 約1年半ぶりに 神は関数値を平均値として認識する で 理解できました。今、気になるのは,どうして、正の無限 負の無限、および ゼロが近いのかです。その近いという意味を、 正確に理解できない。 近い事実は 添付する 電柱の左右の傾きに現れている。
log 0=0
と定義するのが 自然ですが、それには、 ゼロと マイナス無限大 が一致しているとも言える。 そのところが 不明、何か新しい概念、考え 哲学が 求められている???
2015.11.1.05:50)

ローラン展開の正則部の値の解釈のように(再生核研究所声明255 (2015.11.03) 神は、平均値として関数値を認識する)、実は当たり前だったのに、認識がおかしかったことに気づいたので、正確に表現したい。
まず、正の無限大とは何だろうか。 1,2,3,…… といけば、正の整数は 正の無限大に収束、あるいは発散すると表現するだろう。 この正確な意味は イプシロン、デルタ論法という表現で厳格に表現される。すなわち、 どんなに大きな 整数 n をとっても、あるN を取れば(存在して)、N より大の 全ての整数 m に対して、n < m が成り立つと定義できる。 いろいろな設定で、このようにして、無限は定義できる。 どんなに大きな数に対しても、より大の整数が存在する。 それでは、+∞ とは何だろうか。 限りなく大きな数の先を表す概念であることが分かる。 大事な視点は +∞は 定まった数ではなくて、極限で考えられたもので、近づいていく先を表した状況で考えられていることである。 これらの概念は極限の概念として、現代数学で厳格に定義され、その概念は新しいゼロ除算の世界でも、全て適切で、もちろん正しい。
簡単な具体例で説明しよう。 関数y=1/x のグラフはよく知られているように、正の実軸からゼロに近づけば、+∞に発散し、負からゼロに近づけば、-∞に発散する。 ところが、原点では、既に述べてきたように、その関数値はゼロである。 この状況を見て、0、+∞、-∞ らが近い、あるいは 一致していると誤解してはならない。+∞、-∞  らは数ではなく、どんどん大きくなる極限値や、どんどん小さくなる極限値を表しているのであって、それらの先、原点では突然にゼロにとんでいる 強力な不連続性を示しているのである。
複素解析における無限遠点も同様であって、立体射影で複素平面はリーマン球面に射影されるが、無限遠点とは あらゆる方向で原点から限りなく遠ざかった時に、想像上の点が存在するとして、その射影としてりーマン球面上の北極を対応させる。 関数W=1/z は原点でその点が対応すると、解析関数論では考え、原点で一位の極をとると表現してきた。
しかしながら、新しく発見されたゼロ除算では、1/0=0 であり 原点には、ゼロが対応すると言っている。 これは矛盾ではなくて、上記、一位の極とは、原点に近づけは、限りなく無限遠点に近づく、あるいは発散するという、従来の厳格議論はそのままであるが、ゼロ除算は、原点自身では、数としてゼロの値をきちんとして取っているということである。 この区別をきちんとすれば、従来の概念とゼロ除算はしっかりとした位置づけができる。 近づく値とそこにおける値の区別である。

以 上

再生核研究所声明232(2015.5.26)無限大とは何か、無限遠点とは何か。― 驚嘆すべきゼロ除算の結果

まず、ウィキペディアで無限大、無限遠点、立体射影: 語句を確認して置こう:

無限大 :記号∞ (アーベルなどはこれを 1 / 0 のように表記していた)で表す。 大雑把に言えば、いかなる数よりも大きいさまを表すものであるが、より明確な意味付けは文脈により様々である。例えば、どの実数よりも大きな(実数の範疇からはずれた)ある特定の“数”と捉えられることもある(超準解析や集合の基数など)し、ある変量がどの実数よりも大きくなるということを表すのに用いられることもある(極限など)。無限大をある種の数と捉える場合でも、それに適用される計算規則の体系は1つだけではない。実数の拡張としての無限大には ∞ (+∞) と -∞ がある。大小関係を定義できない複素数には無限大の概念はないが、類似の概念として無限遠点を考えることができる。また、計算機上ではたとえば∞+iのような数を扱えるものも多い。
無限遠点 : ユークリッド空間で平行に走る線が、交差するとされる空間外の点あるいは拡張された空間における無限遠の点。平行な直線のクラスごとに1つの無限遠点があるとする場合は射影空間が得られる。この場合、無限遠点の全体は1つの超平面(無限遠直線、無限遠平面 etc.)を構成する。また全体でただ1つの無限遠点があるとする場合は(超)球面が得られる。複素平面に1つの無限遠点 ∞ を追加して得られるリーマン球面は理論上きわめて重要である。無限遠点をつけ加えてえられる射影空間や超球面はいずれもコンパクトになる。
立体射影: 数学的な定義

• 単位球の北極から z = 0 の平面への立体射影を表した断面図。P の像がP ' である。
• 冒頭のように、数学ではステレオ投影の事を写像として立体射影と呼ぶので、この節では立体射影と呼ぶ。 この節では、単位球を北極から赤道を通る平面に投影する場合を扱う。その他の場合はあとの節で扱う。
• 3次元空間 R3 内の単位球面は、x2 + y2 + z2 = 1 と表すことができる。ここで、点 N = (0, 0, 1) を"北極"とし、M は球面の残りの部分とする。平面 z = 0 は球の中心を通る。"赤道"はこの平面と、この球面の交線である。
• M 上のあらゆる点 P に対して、N と P を通る唯一の直線が存在し、その直線が平面z = 0 に一点 P ' で交わる。Pの立体射影による像は、その平面上のその点P ' であると定義する。

無限大とは何だろうか。 図で、xの正方向を例えば考えてみよう。 0、1、2、3、、、などの正の整数を簡単に考えると、 どんな大きな数(正の) n に対しても より大きな数n + 1 が 考えられるから、正の数には 最も大きな数は存在せず、 幾らでも大きな数が存在する。限りなく大きな数が存在することになる。 そうすると無限大とは何だろうか。 普通の意味で数でないことは明らかである。 よく記号∞や記号+∞で表されるが、明確な定義をしないで、それらの演算、2 x∞、∞+∞、∞-∞、∞x∞,∞/∞ 等は考えるべきではない。無限大は普通の数ではない。 無限大は、極限を考えるときに有効な自然な、明確な概念、考えである。 幾らでも大きくなるときに 無限大の記号を用いる、例えばxが どんどん大きくなる時、 x^2 (xの2乗)は 無限大に近づく、無限大である、無限に発散すると表現して、lim_{x \to +\infty} x^2 =+∞ と表す。 記号の意味はxが 限りなく大きくなるとき、x の2乗も限りなく大きくなるという意味である。 無限大は決まった数ではなくて、どんどん限りなく 大きくなっていく 状況 を表している。
さて、図で、 x が正の方向で どんどん大きくなると、 すなわち、図で、P ダッシュが どんどん右方向に進むとき、図の対応で、Pがどんどん、 Nに近づくことが分かるだろう。
x軸全体は 円周の1点Nを除いた部分と、 1対1に対応することが分かる。 すなわち、直線上のどんな点も、円周上の1点が対応し、逆に、円周の1点Nを除いた部分 のどんな点に対しても、直線上の1点が対応する。
面白いことは、正の方向に行っても、負の方向に行っても原点からどんどん遠ざかれば、円周上では Nの1点にきちんと近づいていることである。双方の無限の彼方が、N の1点に近づいていることである。
この状況は、z平面の原点を通る全ての直線についても言えるから、平面全体は球面全体からNを除いた球面に 1対1にちょうど写っていることが分かる。
そこで、平面上のあらゆる方向に行った先が存在するとして 想像上の点 を考え、その点に球面上の点 Nを対応させる。 すると、平面にこの想像上の点を加えた拡張平面は 球面全体 (リーマン球面と称する) と1対1に 対応する。この点が 無限遠点で符号のつかない ∞ で 表す。 このようにして、無限を見ることが、捉えることができたとして、喜びが湧いてくるのではないだろうか。 実際、これが100年を越えて、複素解析学で考えられてきた無限遠点で 美しい理論体系を形作ってきた。
しかしながら、無限遠点は 依然として、数であるとは言えない。人為的に無限遠点に 代数的な構造を定義しても、人為的な感じは免れず、形式的、便宜的なもので、普通の数としては考えられないと言える。
ところが、ゼロ除算の結果は、1 / 0 はゼロであるというのであるから、これは、上記で何を意味するであろうか。基本的な関数 W=1/z の対応は、z =0 以外は1対1、z =0 は W=0 に写り、全平面を全平面に1対1に写している。 ゼロ除算には無限遠点は存在せず、 上記 立体射影で、 Nの点が突然、0 に対応していることを示している。 平面上で原点から、どんどん遠ざかれば、 どんどんNに近づくが、ちょうどN に対応する点では、 突然、0 である。
この現象こそ、ゼロ除算の新規な神秘性である。
上記引用で、記号∞ (アーベルなどはこれを 1 / 0 のように表記していた)、オイラーもゼロ除算は 極限の概念を用いて、無限と理解していたとして、天才 オイラーの間違いとして指摘されている。
ゼロ除算は、極限の概念を用いて得られるのではなくて、純粋数学の理論の帰結として得られた結果であり、世の不連続性の現象を表しているとして新規な現象の研究を進めている。
ここで、無限大について、空間的に考えたが、個数の概念で、無限とは概念が異なることに注意して置きたい。 10個、100個、無限個という場合の無限は異なる考えである。自然数1,2,3、、、等は無限個存在すると表現する。驚嘆すべきことは、無限個における無限には、幾らでも大きな無限が存在することである。 例えば、自然数の無限は最も小さな無限で、1cm の長さの線分にも、1mの長さの線分にも同数の点(数、実数)が存在して、自然数全体よりは 大きな無限である。点の長さはゼロであるが、点の集まりである1cmの線分には長さがあるのは、線分には点の個数が、それこそ目もくらむほどの多くの点があり、長さゼロの点をそれほど沢山集めると,正の長さが出てくるほどの無限である。


以 上


世界中で、ゼロ除算は 不可能 か 
可能とすれば ∞  だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。

再生核研究所声明236(2015.6.18)ゼロ除算の自明さ、実現と無限遠点の空虚さ

(2015.6.14.07:40 頃、食後の散歩中、突然考えが、全体の構想が閃いたものである。)

2015年3月23日、明治大学における日本数学会講演方針(メモ:公開)の中で、次のように述べた: ゼロ除算の本質的な解明とは、Aristotélēs の世界観、universe は連続である を否定して、 強力な不連続性を universe の自然な現象として受け入れられることである。数学では、その強力な不連続性を自然なものとして説明され、解明されること が求められる。
そこで、上記、突然湧いた考え、内容は、ゼロ除算の理解を格段に進められると直観した。
半径1の原点に中心を持つ、円Cを考える。いま、簡単のために、正のx軸方向の直線を考える。 その時、 点x (0<x<1)の円Cに関する 鏡像 は y = 1/x に映る。この対応を考えよう。xが どんどん 小さくゼロに近づけば、対応する鏡像 yは どんどん大きくなって行くことが分かる。そこで、古典的な複素解析学では、x =0 に対応する鏡像として、極限の点が存在するものとして、無限遠点を考え、 原点の鏡像として 無限遠点を対応させている。 この意味で 1/0 = ∞、と表わされている。 この極限で捉える方法は解析学における基本的な考え方で、アーベルやオイラーもそのように考え、そのような記号を用いていたという。
しかしながら、このような極限の考え方は、適切ではないのではないだろうか。正の無限、どこまで行っても切りはなく、無限遠点など実在しているとは言えないのではないだろうか。これは、原点に対応する鏡像は x>1に存在しないことを示している。ところが、ゼロ除算は 1/0=0 であるから、ゼロの鏡像はゼロであると述べていることになる。実際、鏡像として、原点の鏡像は原点で、我々の世界で、そのように考えるのが妥当であると考えられよう。これは、ゼロ除算の強力な不連続性を幾何学的に実証していると考えられる。
ゼロ以上の数の世界で、ゼロに対応する鏡像y=1/xは存在しないので、仕方なく、神はゼロにゼロを対応させたという、神の意思が感じられるが、それが この世界における実態と合っているということを示しているのではないだろうか。
この説は、伝統ある複素解析学の考えから、鏡像と無限遠点の概念を変える歴史的な大きな意味を有するものと考える。

以 上


再生核研究所声明187(2014.12.8)工科系における数学教育について

30余年 工科系で数学の教育に携わって来た者として、それらを回想して今後同じような経験をされる人たちの参考になるように省察して置きたい。
まず、工科系における数学教育の目標を抑えて置こう:
1) 工科系全般における表現の立場から、数学上の述語、概念、記号などは工科系を表現する言語として必要であるから、関係数学の習得は必要である。典型的な概念として、微積分の概念、行列の概念、微分方程式、ベクトル解析(勾配、回転、発散)、解析関数の概念などは必須の概念と考えられよう。
2) 計算機の普及、応用を待つまでもなく、論理の学習; 論理的に考え、推論して纏め、表現できるような精神の涵養に 数学教育の重要性があると考えられる。
3)高級に表現すれば、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については次を参照:

No.81, May 2012(pdf 432kb)
19/03/2012 -ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。

簡潔に述べれば、数学は 時間にも、エネルギーにもよらずに存在する神秘的な 関係の論理体系であるが、ユニバースは 数学を言語として構成されている という、信仰のような信念を抱いている。基本的な数学は ユニバースの基本的な様を表現しているのではないだろうか。すなわち、真理を追求する真摯な精神の涵養である。

それゆえに、工科系における数学教育の必要性は明らかである、それで、その明確な動機のもとで、数学教育に携われる工科系に属する数学の教師は、誠に充実感のする 社会的な使命を果たせる幸せな存在である。
担当の基本は、線形代数、微積分学、微分方程式、ベクトル解析、複素解析であろうが、それらは、理工科系の基本カリキュラムで、それらは、重要な概念を有していると考えられる。教える立場でも、ここをきちんと教えたいという、項目が多々存在する、楽しい数学である。
工科系で、生じる問題の基本は、工学 各学科の、期待、要請と 数学の専門家の担当する講義の仕方、カリキュラム内容との乖離で、しばしば問題が顕になる。上記、工科系における数学教育の目標について 科の先生方の反対意見は出ないと思われるが、近年、学生の基礎学力の大きな落ち込みの中で、科で直接必要、必須の言わば 1)の基本が疎かになり、科の教育に大きな障害が起きて、1)の強化、補充を数学教室に求めたり、科自身で補充の授業を準備する事態さえ招いている。数学教室で、科の要求する数学の内容を聞くと、相当に高級な現代的な数学の内容が広範に出てきて、対応できないような状況は よく見られる。体系的に見れば ちぐはぐ、また科の教員でも要求がバラバラな感じさえ受ける。もしそれらの要求を満たすようにするならば、辞書の項目の解説調になってしまい、数学者の好みである2)、3)項の要素が失われて、講義に熱が入らない気持ちになるのではないだろうか。― この観点が工科系における数学教育における問題の中心であると考えられる。
数学の教師の立場から見れば、自分の専門の研究に集中しすぎで、視野が狭く、工科系全般にわたる素養の貧しさを招き、しばしば独善的な講義スタイルになる傾向があるので、気をつけたい.

学科への対応の精神は、数学に分け与えられる時間数が極めて限られていて、しかも、要求される内容の豊富さを考えれば、講義内容を精選して、基礎の基礎、基本の基本をきちんと学習させ、多くの内容については、学生が必要に応じて、自分で学習できるようなるように教授するのが良いのではないだろうか。それには、まず、数学が楽しい、大いに有効であると 学生が感じられるような、そのような講義が望まれる。講義は全人格をかけた、交流の場であり、真理を追求する研究者の尊い姿が 学生への愛とともに 反映されるものでなくてはならない。学生による評価の問題で、教師が講義の有り様などいろいろ気遣い、板書やPDファイルなどの作成など講義の技術面などに関心が移っているような世相があるが、それらの営みの空虚さを指摘したい。そうではなくて、学生は、教師の学問に取り組む姿勢や、人生や社会に取り組む姿勢、全人格をみて教師を評価していることが分かるだろう。技術面のことよりは、研究者として、人間としての精進が肝要ではないだろうか。
人生とは何か、生きるということは どのようなことか、そのような問を忘れて久しいように感じられる世相ではないだろうか。学生は、いろいろな情報、勉学、就職関係の将来構想などなどで時間に追われ、教員も研究、教育に専念できず、さらに教育、研究の環境を悪化させる要務で忙しすぎて、何事じっくり取り組み、考察を深めるような貴重な時間を失っているように見える。学生時代には全人生を思考できるように 学生に自由を保証する精神が 大学教育の基本な配慮でなければならないと考える。― 学生時代は良かった、良い環境で、たっぷり自由な時間がとれた。
インターネットの普及で、いわゆる知識、単なる情報は、簡単にどこでも利用できる時代の到来は、カリキュラム、教育内容の精選と講義の有り様の変革をもたらし、自由の保証に明るい展望をもたらすのではないだろうか。その骨格として、講義、教育時間の縮小、休暇の増大、そのために一般教職員の大学の年間、1ヶ月間閉鎖、学生の休暇2ヶ月間を考えるのは良い出発点ではないだろうか。これらは既に、欧米の大学では相当に確立していて習慣になっていることも大いに参考にすべきではないだろうか。― 5年間ポルトガルのアヴェイロ大学で研究員として過ごしたが、何と8月は 大学の暦に 無かった。完全休暇である。土、日の休暇は当然で、水曜日は講義が無く、水曜日と金曜日は 昔の日本の土曜日のような調子で、金曜日午後には 多くの学生が、帰省するような情景であった。年中仕事に追われている 異常な日本の大学の有り様を見るにつけて、我々は大いに学び、大学の有り様を変革すべきだと考える。
そのような大幅な自由の下で、自主学習する風潮と日本のように 相当に学力などを気にして、詰み込み式授業の風潮のどちらが、長期的に見て優れているか、考えてみる必要があるのではないだろうか。ただし、自由の代償に 試験は相当に期間と時間を掛けて厳しくする風潮がある。
工科系に属する教員の担当学生数は、数学の所属部署で、最も多い状況にあり、ある意味で、数学を現実社会に活かす立場で それだけ大きな役割が有ると考えられる。教育ばかりではなく、入試に関与する部分も極めて大きく、入試業務は年中 心を傷めさせられる負担になっている場合が多いのではないだろうか。そもそも入試の有り様そのものの見直しを提案、問題提起しているが(再生核研究所声明20:大学入試センター試験の見直しを提案する),ポルトガルの制度を紹介して、関係者の検討を要望して置きたい:
有り様は簡単で、そもそも大学は入試業務を殆どせず、作成された資料を元に、選択するだけである。入試問題作成は国の機関が行い、入試は高校を会場に高校が期間を掛けて行なう。― このような入試で、個々の数学教員や、大学で膨大な仕事を課せられている日本の状況と比べて、唖然とさせられた。大きな仕事からの開放である。― 勿論、これは国立大学の場合であるが、私立大学などでも上記資料を参考にしているのではないだろうか。
さらに、女性数学者の割合が、殆ど自然に男女、同数であることは 数学の研究、教育、そして教室の雰囲気を日本のそれらとは相当に違ったものにしている。それらは、家庭と大学の仕事が両立出来る基礎があることを示しており、ポルトガルの大学は、相当に優雅であると表現されるだろう。7年目には 日曜日が週に有るように サバーティカルライトで1年間大学の仕事から解放される。それは、何を意味するだろうか。
以 上






0 件のコメント:

コメントを投稿