2018年12月2日日曜日

江戸時代にも「プロジェクトX」「ドラゴンボール」「紳士録」があった 江戸のベストセラー 監修・編集・著者名清丸 惠三郎 著 出版社名洋泉社 出版年月日2017年6月20日

江戸時代にも「プロジェクトX」「ドラゴンボール」「紳士録」があった
江戸のベストセラー
監修・編集・著者名清丸 惠三郎 著
出版社名洋泉社
出版年月日2017年6月20日
定価本体1600円+税
判型・ページ数四六判・223ページ
ISBN9784800312556
BOOKウォッチ編集部コメント
 明治になって日本が急激に成長したのは、江戸時代の知的蓄積が豊富だったから、といわれる。中でもしばしば指摘されるのが、読書熱の高さだ。本書『江戸のベストセラー』(洋泉社)は江戸時代にどんな本が話題になり、よく読まれていたか、改めて振り返ったもの。知っている本もあれば初耳もあり、なかなか興味深い。
何百年も続くロングセラー
 著者の清丸惠三郎さんは1950年生まれ。日本短波放送記者を経てプレジデント社に移り、雑誌「プレジデント」の編集長を前後2回、7年間にわたって務めた。同誌をビジネス雑誌ナンバーワンに押し上げた立役者だという。その後は別の出版社を立ち上げる一方、フリーの編集・出版プロデューサーとしても活躍しているようだ。
 本書では12冊が取り上げられている。井原西鶴の『好色一代男』、近松門左衛門の『曽根崎心中』、十返舎一九の『東海道中膝栗毛』、鶴屋南北の『東海道四谷怪談』、滝沢馬琴の『南総里見八犬伝』などは今も読み続けられている。いわば何百年も続くロングセラーだ。貝原益軒の『養生訓』や杉田玄白の『解体新書』も、教科書で習うので名前は有名だ。
 余り聞きなれないところでは、『塵劫記』(じんこうき)や、『武鑑』がある。
 『塵劫記』は中国の数学書『算法統宗(中国語版)』をもとに書かれた数学の入門書。基礎から応用まで容易に学習できる。寺子屋などで使われた。要するに算数のテキストだ。
 『武鑑』は大名や江戸幕府役人の氏名・石高・俸給・家紋などを記した年鑑。今でいう「紳士録」のようなもの。毎年更新され、ポケット版も作られた。
「技術先進国」でもあった
 著者は、ビジネス雑誌の腕利き編集者だけあって、こうしたベストセラーにちょっとしたキャッチコピーを付けて紹介している。『塵劫記』は「技術大国日本への道を拓いた和算入門のバイブル」、『解体新書』は「近代医学の曙となった江戸のプロジェクトX」、『南総里見八犬伝』は「終わらないのは江戸の昔も同じ! 元祖ドラゴンボールの憂鬱」などなど。『武鑑』は定期的に改訂された江戸版『会社四季報』と見なしている。
 これらのベストセラーをあえて分類すれば、健康読本、学習参考書、タウンガイド、ファンタジーやホラー、実録小説、ルポもの、事典など、現代のベストセラーとたいして違わないところも面白い。
 江戸時代の識字率については諸説あり、はっきりしない。武士や上層部の町民が相応の教養を誇っていたことは間違いないが、『日本人の名前の歴史』(吉川弘文館)によれば、名前が書けない人も少なくなかった。明治になって相次いで発行された新聞が「婦女子の識字率向上」を目指したものだったことはよく知られている。明治の中ごろでも青年層の識字率は半分程度だったようだから、江戸時代がそれより下回っていたことは間違いないだろう。
 一方で、江戸時代は「技術先進国」でもあったことは、『江戸時代のハイテク・イノベーター列伝』(言視舎)などに詳しい。さまざまな意味で江戸時代の蓄積が、明治時代を準備していたことは確かだろう。ちょうど東京都墨田区の「たばこと塩の博物館開館」では2019年1月14日まで、日本が初めて公式に参加した万国博覧会を振り返る「産業の世紀の幕開け ウィーン万国博覧会」が開かれている。1873年の開催だが、出品物の大半は江戸時代の所産だ。一度見ておくといいかもしれない。
ゼロ除算の発見は日本です:
∞???    
∞は定まった数ではない・
人工知能はゼロ除算ができるでしょうか:
とても興味深く読みました:2014年2月2日 4周年を超えました:
ゼロ除算の発見と重要性を指摘した:日本、再生核研究所
ゼロ除算関係論文・本
再生核研究所声明 452 (2018.9.27): 世界を変えた書物展 - 上野の森美術館
(2018年9月8日―24日 )

2018.9.17. 展示書籍などを拝見させて頂きました。大変賑わっていて関心の大きさが感じられました。時間の関係で じっくり、詳しくとは行きませんでしたが、全体の案内(知の連鎖系譜マップ)で、初期、初めにアリストテレスとユークリッドが 在って、中間くらいにニュートン、最後がアインシュタインで 世界史を壮観する想いがしました。 数学では 非ユークリッド幾何学の扱いにおけるガウスの記述、資料の欠落と算術の発見、ゼロの発見の Brahmagupta (598 -668 ?) の欠落は 残念に思われました。書籍など無くても大事な事実と思いますので、 大きく取り上げて欲しかった。 
この世界史年表で凄いことに気づいて興奮して後にしました。
ゼロ除算がこれらで基本的な関与があるからです。
まず、ゼロ除算は、ユークリッド幾何学の変更を求め、連続性のアリストテレスの世界観に反して、強力な不連続性の世界を示しています。ゼロ除算はアインシュタインの人生最大の関心事であったとされ、今でもなお、ゼロ除算とアインシュタインの相対性理論との関係が議論され、ブラックホールは 神がゼロで割ったところに存在するなどと 神秘的な問題を提供しているからです。
もちろん、Brahmaguptaは ゼロ除算を議論していて、その後、1300年に亘って、世界史で議論されてきて、 ニュートン力学でも基本的な問題を提起している。 当然、非ユークリッド幾何学とも関係していて、それらの空間とも違う全く新しい幾何学を提案している。このように考えると、検討中の Division by Zero Calculus の著書(出版契約済み)は 世界史上で大きな扱いになるだろうと発想して、大変興奮して、展示会を後にしました。
広く世界に意見を求め、この著書の出版計画を進めたい。 そのためにも途中経過も公表して行きたい。
ところで、 展示会の名称には 世界を変えた科学の書物展示会などと、 科学などの言葉を加える必要があるのではないでしょうか。 そうでなければ、 バイブル、法華経、コーラン、論語などが並ぶことになるのでは ないでしょうか。
尚、ゼロ除算については、一般向きには
数学基礎学力研究会 サイト:
http://www.mirun.sctv.jp/~suugaku/
○ 堪らなく楽しい数学-ゼロで割ることを考える
で4年間を越えて解説を続けています。 
最後に素晴らしい展示会を企画され、そのために努力された人たちに 敬意と感謝の気持ちを表明したい。

以 上
再生核研究所声明 455(2018.10.9):   ゼロ除算は幾らの価値がありますか、人間をどう救うのですか
― 回答
ゼロ除算に興味・関心を懐く好ましい方からの質問です。 ノーベル賞受賞者の業績、社会貢献や人命を救った業績などとの比較からそのような率直な発想、質問が湧いたものと思われます。再生核研究所ではその声明の趣旨でも述べているように素人の方のご質問を真摯に受け止め誠意をもって回答してきました。 実際、ゼロ除算の発見の大きな動機は そのような素人の方のご質問、100/0 の意味を問われたことが大きな動機になっています。そこで、おもしろおかしく、楽しく、真面目に回答したい。
ゼロ除算は数拾兆円の価値があるでしょう。まず、ゼロ除算はアリストテレス(BC384 - BC322)、ユークリッド以来の新しい世界を開拓し、直接的にも Brahmagupta (598 - 668 ?)、 Brāhmasphuṭasiddhānta (628), 以来の解明、発見です。 アインシュタインの人生最大の関心事とも伝えられ、万有引力のニュートン力学の式でも深刻な問題を提起していて、天才オイラーなどの有名な間違いや誤解が世界史上でも回想されます。このように神秘的な永い歴史を閉じて、新しい世界を開拓した意義は 如何に大きな価値を有するでしょうか。基本的な世界を拓いたとは、簡潔に次のように述べられます:
ユークリッド空間を変更する驚嘆すべき新しい空間が現れる。非ユークリッド空間とも違った、全く新しい空間である。古典的な結果に間違いが存在することさえ証明された: 無限遠点は無限ではなくゼロで表されること。 直線には、コンパクト化して原点を加えるべきこと。直線とは中心が原点で、半径がゼロの円とみなせること。円に関する中心の鏡像は無限遠点ではなくて、中心それ自身であること。\tan(\pi/2) =0 など全く新しい概念と世界を拓いている。孤立特異点で 解析関数は有限確定値をとること。 x,y 直交座標系で y 軸の勾配はゼロであること、無限遠点に関係する図形や公式の変更。接線や法線の考えに新しい知見。ゼロ除算算法の導入。― 分母がゼロになる場合にも、分子がゼロでなくても、そこで意味のある計算法。従来微分係数が無限大に発散するとされてきたとき、それは 実はゼロになっていた。特異点で微分方程式を満たしているという知見。図形の破壊現象の統一的な説明。物理学などへの広範な応用。 これらは、数学の基礎部分の広い範囲に大きな変更を求めている。教科書、学術書の変更。数・物ばかりではなく、世界観の変更を求める、世界史的な事件である。
数学の超古典的な基礎理論を変更する数学の価値はどのようなものでしょうか。世界中の中等・大学教育の数学の学習を変更するとは、しかも数学の理論は科学が発展する限りは時間によらずに世界の文化に貢献することになります。そうすると数拾兆円の価値など 小さく感じられないでしょうか。 日本で発見されたゼロ除算算法は 世界の人々に愛される 最も有名な日本の世界貢献 になるのは、既に当たり前の事実ではないでしょうか。そのような認知が得られるのは時間の問題ではないでしょうか。数学の理論は、人にも国家にも、よらない普遍性を、不変性を有しています。長期的には 数学の進化には必然的な要素がある と考えられます。ゼロ除算算法は 数学の基礎部分の欠陥 を示していると言えます。
人間をどのように救うのか。この質問はとても尊い質問で重要です。 経済や平和が幾ら発展しても、知識が増大しても、寿命が幾ら伸びても 人間は幸せになれないのではないでしょうか。 人間はどのように生きるべきか、何時までも人間の問いは続き、人間の賢さや、人生の意味などに寄与しなければ、それらは空しいだけ とも言えるからです。
ゼロ除算の発見とその理解は、人間精神の開放 に寄与するでしょう。まずは、人間が、予断と偏見に満ち、盲目的で 単細胞的な存在 であることを教えてくれるでしょう。これは哲学の祖、ソクラテスの言葉 汝みずからを知れ という、深い問いを思い起させるでしょう。 ゼロ除算の理解は 人間精神の開放 に大きく寄与するだろう。それは、人間を救う と表現しても過言ではないと 言える。 ゼロ除算算法の結果、人生図形 というグラフを得たが、それは、人生とは如何なるものか 良く表現していて、実際 悟りの心 にも大きく貢献するだろう。 ゼロ除算算法のない世界は、実際、未だ未明の時代、野蛮な時代 と言える。 新世界は 既に見えている。 次も参照:
再生核研究所声明 452 (2018.9.27): 世界を変えた書物展 - 上野の森美術館(2018年9月8日―24日 )

以 上
再生核研究所声明 462(2018.11.12):  ゼロで割れるか、ゼロで割る ー 任意の解析関数や数は ゼロで割ることが できる。
できる、できない、そのような事は、どのような意味で そうなのかを明確にする必要がある。 前提、仮定で結論はいろいろあるので、しっかり その意味をとらえる必要がある。 ゼロ除算が 1300年以上も未解決であったその理由は、1/0  の意味を曖昧にして、議論してきたためと言える。 希望的に それを未知の数と考えた方が 相当いて、混乱をしている。 ゼロ除算の本質は、実は その定義にあったと言える。  考え方で ゼロで割ることができます。 言ったことの意味を しっかりさせましょう。 考えていることの意味、本質をしっかりさせましょう。 勝手に誤解して、勝手に思い込んで 批判している人が  世間の問題でも結構いるように感じられる。 疑問は 問うて真実を明らかにしたい。
ゼロ除算、ゼロで割る問題、分からない、正しいのかなど、 良く理解できない人が 未だに 多いようです。
そこで、簡潔な一般的な 解説をまず行います。 分数a/b は a  割る b のことで、これは 方程式 b x=a の解のことです。これが常識的な数学界の定説です。
ところが、 b がゼロならば、 どんな xでも 0 x =0 ですから、a がゼロでなければ、解は存在せず、 従って 100/0 など、ゼロ除算は考えられない、できないとなってしまいます。 普通の意味では ゼロ除算は 不可能であるという、世界の常識、定説です。
できない、不可能であると言われれば、いろいろ考えたくなるのが、人間らしい創造の精神です。 基本方程式 b x=a において b がゼロならば解けない、解が存在しないので、困るのですが、このようなとき、従来の結果が成り立つように、従来の知られていた結果がそのまま成り立つようにして、解の考えを拡張して、解が考えられないか(形式不変の原理)と、数学者はよく考えて来ました。 何と、 そのような方程式は 何時でも唯一つに 一般化された意味で 解をもつと考える 方法があります。 Moore-Penrose 一般化逆の考え方です。 どんな行列でも 逆行列を唯一つに定める 一般的な 素晴らしい、自然な考えです。
その考えだと、 b がゼロの時、解はゼロが出るので、 a/0=0 と定義するのは 当然です。 すなわち、この意味で 方程式の解を考えて 分数を考えれば、ゼロ除算は ゼロとして定まる ということです。
ただ一つに定まるのですから、 この考えは 自然で、その意味を知りたいと 考えるのは、当然ではないでしょうか。
しかしながら、このように考えると、初等数学全般に影響を与える ユークリッド以来の新世界が 現れてきます。
他の考え方も幾つか述べて来ました。代数的にゼロ除算を含む体の構造を考える、高橋の一意性定理から拡張分数を定義するなど いろいろ考え方はあります。しかしながら、これらの導入、定義では割り算を拡張したという その存在と定義は しっかりしていますが、割り算の意味、導入された分数の意味がまだ 幻のようになっていて、 割った意味がどうなっているか 分からないと言えます。どのような意味で ゼロで 割れるのか その意味をさらに明確にしたい。 ここでは、その考えから、新しい考え方を述べたい。
先ず、ゼロ除算算法を導入します。ゼロ除算算法とは
We will introduce the division by zero calculus: For a Laurent expansion around $x=a$,
\begin{equation}
f(x) = \sum_{n=-\infty}^{-1} C_n (x - a)^n + C_0 + \sum_{n=1}^{\infty} C_n (x - a)^n
\end{equation}
We consider as follows:
\begin{equation}
f(a) = C_0.
\end{equation} 
For the correspondence for the function $f(x)$, we will call it the division by zero calculus. By considering derivatives, we can define any order derivatives of the function $f$ at the singular point $a$ as follows:
$$
f^{(n)}(a) = n! C_n.
$$
ゼロ除算算法とは 要するに孤立特異点をもつ解析関数に ローラン展開の係数C_0を対応させることです。 ゼロ除算算法は 本質的には定義であり、仮説であり、その重要性のゆえに公理のようなものである。 ― ここであるが、ゼロ除算については未だに 不信感を拭えない状況にあると考え、
再生核研究所声明 420(2018.3.2): ゼロ除算は正しいですか,合っていますか、信用できますか。 - 
回答を纏めたが、相当な数学者が誤解していることが分かった。そもそも数学とは仮定、公理系を基礎に組み立てられる関係からなる理論体系全体が一つの数学であり、数学的な真偽は論理的な展開の完全性にあって、 数学を越えた真智とは異なり、数学界外における価値はその理論体系の影響、貢献による。数学者は己の好みで自由に論理体系を進めて数学を展開していく自由を有するが、それらの価値を外に向かって示すには、どのような貢献ができるかを絶えず具体的に示して行く必要がある。そのような努力を怠れば, 私はそのような数学には興味も関心も無いとして、無視されていくことになりかねない。その様な観点から、ゼロ除算の意義をいろいろ触れてきた。ゼロ除算算法の仮定からどのようなことが導かれ、どのような影響を与えるかをいろいろ触れてきている。ゼロ除算の仮定の意義の大きさは、その影響によるのであって、その真偽自身を数学では本質的に問わない(問えない)ということである。上記で、結果を吟味しながら応用して行くという態度をとれば、人は結果について安心できるのではないだろうか。
上記ゼロ除算算法が初等数学全般に影響を与えるばかりか、 アリストテレス、ユークリッド以来の空間の、世界観の変更を要求していることを 800件を超える例で示していて、現代初等数学の変更が求められている。 ゼロ除算算法は新しい公理と言える。
先ず、基本的な関数W= F(z) = 1/zでは、ゼロ除算算法で次を得る:
$$
F(0) = 0.
$$
関数の形から、
$$
1/0 =0.
$$
ここで、 この等式は関数の形とゼロ除算算法から導かれたもので、1/0 は普通の意味、方程式 0 x=1 の解として得られたものではない。 基本関数の原点の値が定義されたものである。それを表している。
これが、1  を 0 で割ったものの値がゼロであるとの、ここでの意味であり、定義である。 神秘的に永い歴史を有するゼロ除算についての 一つの解答であるが、我々の解答は このような解釈をきちんと与えたことにある。
世に、ゼロで 割れるかの問題に対して、我々は、ここでは 次のように解答を与えたい (理論体系でいろいろな考え方、捉え方が存在する):
原点 z=0 の近傍で、特異点を許す解析関数f(z) (もちろん、任意定数関数を含む)に対して、次の原点における値を ゼロ除算算法で定めることができる: 任意の正の整数nに対して、
$$
f(z)/z^n.
$$
例えば、
$$
(e^x/ x^n) (0) = 1/n!.
$$
この意味で、任意の解析関数や数は ゼロで割ることが できる。

以 上
再生核研究所声明463 (2018.11.19):  ゼロ除算を理解すると 世の中に対して どのようなメリットがあるでしょうか。 ― 回答
一般の方から寄せられた率直な質問です。 多くの人が数学者はどのような社会貢献をしているのか疑問に思っているような状況が広くあるのでは ないかと考えられます。
教育における数学の貢献、自然科学における数学の貢献は歴然ですが、研究成果の社会貢献になると、難し過ぎ、抽象的すぎ、細かすぎ、分からない、どうでも良いと思われることにハマっている。 それ以前に全然わからないというような印象が あるのでは ないでしょうか。
ゼロ除算についての上記のようなご質問に対して、率直に真正面から回答してみたい。
ゼロ除算の理解は、小学生でも十分に分かる内容ですが、神秘的な歴史を有していて、ゼロ除算不可能は アリストテレスに遡り、数学的にも算術の確立者 Brahmagupta (598 -668 ?) 以来の問題であると言えます。 また物理学上の問題から、アインシュタインの人生最大の関心事であったと言われています。天才オイラーの間違いなどともいわれるように 多くの天才的な数学者が関与して来ています。インド人の永い苦しみの様も 最近詳しく報告され、現代に至っても奇怪な理論が、見解が インターネット上を賑わしています。
ところが、ゼロ除算の本質は、簡単で明らかですが、それでも発見後4年を経ても 世の理解は 十分とは言えません。 これらの事情を見て、まずは、ゼロ除算は、人間の愚かさ、思い込んだら変えられない、独断と偏見に満ちた存在であることを 良く教えてくれる。 このことが ゼロ除算を理解する最大の、メリットであると考えられます。 簡単なことが 天才たちでさえ 既成概念にとらわれて 理解できず、解明できなかった 歴史の重い事実です。 数学界から 不可能の烙印を押され、それはまるで絶対的な命題であるように受け止められ 疑うことをせず、その壁を乗り越えられなかった 事実です。 事実は 本当に簡単な事でした。
インド人たちの永い間の努力と 現在でも 自分の考えに囚われて 新しい事実を受け入れられない人たちが相当いる。 マインドコントロールという言葉がはやったことがありますが、 すっかりはまっていて 抜けられない姿を 結構広く見ることが できます。数学者がかえって古い世界にハマっていて、素人の方の方が理解しやすい状況は 結構良く見られる。あまりにも深く学習しすぎてしまったので、なかなか新しい数学に理解をしめせないようです。心が向かないようです。
ゼロ除算の理解は、人間の性(さが)を理解するのに 貢献するでしょう。
ゼロ除算は、数学的には、 真っすぐに立った電柱の勾配がゼロであること y軸の勾配がゼロであることを示すので、勾配の考えに新しい感覚と世界観をもたらしますが、その背後にはアリストテレス、ユークリッド以来の世界観の変更、初等数学全般の変更を要求する基本的な理論、数学が存在します。 - 素人に聞くと相当多くの人が真っすぐに立った電柱の勾配はゼロであると回答されることは 驚きです。しかし、数学では考えられないとなっている変な状況です。 -  しかしながら、一般の人たちが学んで楽しく、感銘するものを探せば、それはどのようなものかと考える。 数学を超えたような影響の視点です。 - 平面をどんどん遠ざかっていくとどうなるかを考えると、無限遠点に至ると考えられますが、ゼロ除算の結果 無限の彼方は 実は始めの原点に一致していることが分かった。
― この表現ではまるで宗教的、哲学的な視点であると理解されるだろうことは、 良く分かります。 - 実際、これは誤解であるが ゼロ除算は宗教的だ、 哲学的だと印象を述べた数学者が結構いる。 しかし、立体射影の考えを参照されれば、簡単に数学として、その意味を捉えることができます。 ゼロと無限大のある意味での一致の発見が ゼロ除算の拓いた新世界の事実です。 ゼロと無限大はいろいろ似たような性質が有りましたが、その関係が露わにされてきた。 意味が明らかになってきた。
ゼロと無限大の一致は 世界観に大きな影響を与えました。はじめと終わりの一致、両極端の一致と普遍化すると新しい世界が見えてくるのではないだろうか。実際、衝撃が永く続き新しい世界が見えて来るように感じられました。ゼロ除算発見以前の世界と、発見後の世界では 相当に変化してきて、賢くなってきた、世の中が良く見えるようになってきたような感覚を懐いています。 このような衝撃を感じられれば、ゼロ除算の大きな一般的な貢献と言えると思います。 天動説を変えて地動説を受け入れたような大きな変化です。
ゼロ除算は、考え方の変更で 多くの誤解をするが、それ故に数学的な考え方や、 発想の仕方で、数学的な論理とは何か。 考え方の仕方などで、大いに修行、訓練になると考えられる。 できないとされていたことが、できるようになった発想の仕方は、非常に教訓的で感銘を受けるのでは ないだろうか。 ― 全く思いがけないことが起きて、それが真実であった。 その衝撃です。
物理的な連続性の概念はアリストテレスによって主張され、欧米の文明に甚大な影響を与えたとされるが、ゼロ除算で現れた強力な不連続性の概念は、沢山の驚くような具体例を明らかにしているが、 不連続性の考えは、今後 新しい世界観としてどんどん広まっていくと考えられる。 基本的な例をしっかり理解することによって、新世界の現象をどんどん発見し、理解が進むだろう。 ゼロ除算の拓いた世界は、実際、 新しい数学、世界であると言える。 - 実際、できないとされていたことが できるようになったというのだから、新しい世界が拓かれたと言える。しかも、それは 算術の基本に関わる変更である。
次も参照:
再生核研究所声明 455(2018.10.9):   ゼロ除算は幾らの価値がありますか、人間をどう救うのですか
― 回答
(一部)除算の発見とその理解は、人間精神の開放 に寄与するでしょう。まずは、人間が、予断と偏見に満ち、盲目的で 単細胞的な存在 であることを教えてくれるでしょう。これは哲学の祖、ソクラテスの言葉 汝みずからを知れ という、深い問いを思い起させるでしょう。 ゼロ除算の理解は 人間精神の開放 に大きく寄与するだろう。それは、人間を救う と表現しても過言ではないと 言える。 ゼロ除算算法の結果、人生図形 というグラフを得たが、それは、人生とは如何なるものか 良く表現していて、実際 悟りの心 にも大きく貢献するだろう。 ゼロ除算算法のない世界は、実際、未だ未明の時代、野蛮な時代 と言える。 新世界は 既に見えている。 次も参照:
再生核研究所声明 452 (2018.9.27): 世界を変えた書物展 - 上野の森美術館(2018年9月8日―24日 )
以 上
神の数式で ゼロ除算を用いると どうなるのでしょうか という質問が 寄せられています。
神の数式:
神の数式が解析関数でかけて居れば、 特異点でローラン展開して、正則部の第1項を取れば、 何時でも有限値を得るので、 形式的に無限が出ても 実は問題なく 意味を有します。
物理学者如何でしょうか。
計算機は 正しい答え 0/0=0 を出したのに計算機は何時、1/0=0 ができるようになるでしょうか。 

カテゴリ:カテゴリ未分類
​そこで、計算機は何時、1/0=0 ができるようになるでしょうか。 楽しみにしています。 もうできる進化した 計算機をお持ちの方は おられないですね。
これは凄い、面白い事件では? 計算機が人間を超えている 例では?
面白いことを発見しました。 計算機は 正しい答え 0/0=0
を出したのに、 この方は 間違いだと 言っている、思っているようです。
0/0=0 は 1300年も前に 算術の発見者によって与えられたにも関わらず、世界史は間違いだと とんでもないことを言ってきた。 世界史の恥。 実は a/0=0 が 何時も成り立っていた。 しかし、ここで 分数の意味を きちんと定義する必要がある。 計算機は、その意味さえ知っているようですね。 計算機、人間より賢くなっている 様が 出て居て 実に 面白い。
2018.10.11.11:23
計算機は 正しい答え 0/0=0 を出したのに
カテゴリ:カテゴリ未分類
面白いことを発見しました。 計算機は 正しい答え 0/0=0
を出したのに、 この方は 間違いだと 言っている、思っているようです。
0/0=0 は 1300年も前に 算術の発見者によって与えられたにも関わらず、世界史は間違いだと とんでもないことを言ってきた。 実は a/0=0 が 何時も成り立っていた。しかし、ここで 分数の意味を きちんと定義する必要がある。 計算機は、その意味さえ知っているようですね。 計算機、人間より賢くなっている様が 出て居て 実に面白い。
2018.10.11.11:23
ゼロ除算、ゼロで割る問題、分からない、正しいのかなど、 良く理解できない人が 未だに 多いようです。そこで、簡潔な一般的な 解説を思い付きました。 もちろん、学会などでも述べていますが、 予断で 良く聞けないようです。まず、分数、a/b は a  割る b のことで、これは 方程式 b x=a の解のことです。ところが、 b がゼロならば、 どんな xでも 0 x =0 ですから、a がゼロでなければ、解は存在せず、 従って 100/0 など、ゼロ除算は考えられない、できないとなってしまいます。 普通の意味では ゼロ除算は 不可能であるという、世界の常識、定説です。できない、不可能であると言われれば、いろいろ考えたくなるのが、人間らしい創造の精神です。 基本方程式 b x=a が b がゼロならば解けない、解が存在しないので、困るのですが、このようなとき、従来の結果が成り立つような意味で、解が考えられないかと、数学者は良く考えて来ました。 何と、 そのような方程式は 何時でも唯一つに 一般化された意味で解をもつと考える 方法があります。 Moore-Penrose 一般化逆の考え方です。 どんな行列の 逆行列を唯一つに定める 一般的な 素晴らしい、自然な考えです。その考えだと、 b がゼロの時、解はゼロが出るので、 a/0=0 と定義するのは 当然です。 すなわち、この意味で 方程式の解を考えて 分数を考えれば、ゼロ除算は ゼロとして定まる ということです。ただ一つに定まるのですから、 この考えは 自然で、その意味を知りたいと 考えるのは、当然ではないでしょうか?初等数学全般に影響を与える ユークリッド以来の新世界が 現れてきます。
ゼロ除算の誤解は深刻:
最近、3つの事が在りました。
私の簡単な講演、相当な数学者が信じられないような誤解をして、全然理解できなく、目が回っているいるような印象を受けたこと、
相当ゼロ除算の研究をされている方が、基本を誤解されていたこと、1/0 の定義を誤解されていた。
相当な才能の持ち主が、連続性や順序に拘って、4年以上もゼロ除算の研究を避けていたこと。
これらのことは、人間如何に予断と偏見にハマった存在であるかを教えている。
​まずは ゼロ除算は不可能であるの 思いが強すぎで、初めからダメ、考えない、無視の気持ちが、強い。 ゼロ除算を従来の 掛け算の逆と考えると、不可能であるが 証明されてしまうので、割り算の意味を拡張しないと、考えられない。それで、 1/0,0/0,z/0 などの意味を発見する必要がある。 それらの意味は、普通の意味ではないことの 初めの考えを飛ばして ダメ、ダメの感情が 突っ走ている。 非ユークリッド幾何学の出現や天動説が地動説に変わった世界史の事件のような 形相と言える。
2018.9.22.6:41
ゼロ除算の4つの誤解:
1.      ゼロでは割れない、ゼロ除算は 不可能である との考え方に拘って、思考停止している。 普通、不可能であるは、考え方や意味を拡張して 可能にできないかと考えるのが 数学の伝統であるが、それができない。
2.      可能にする考え方が 紹介されても ゼロ除算の意味を誤解して、繰り返し間違えている。可能にする理論を 素直に理解しない、 強い従来の考えに縛られている。拘っている。
3.      ゼロ除算を関数に適用すると 強力な不連続性を示すが、連続性のアリストテレス以来の 連続性の考えに囚われていて 強力な不連続性を受け入れられない。数学では、不連続性の概念を明確に持っているのに、不連続性の凄い現象に、ゼロ除算の場合には 理解できない。
4.      深刻な誤解は、ゼロ除算は本質的に定義であり、仮定に基づいているので 疑いの気持ちがぬぐえず、ダメ、怪しいと誤解している。数学が公理系に基づいた理論体系のように、ゼロ除算は 新しい仮定に基づいていること。 定義に基づいていることの認識が良く理解できず、誤解している。
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
Eπi =-1 (1748)(Leonhard Euler)
E = mc 2 (1905)(Albert Einstein)
1/0=0/0=0 (2014年2月2日再生核研究所)

ゼロ除算(division by zero)1/0=0/0=z/0= tan (pi/2)=0
https://ameblo.jp/syoshinoris/entry-12420397278.html
 
1+1=2  (      )
a2+b2=c2 (Pythagoras)
1/0=0/0=0(2014年2月2日再生核研究所)


Wasan Geometry and Division by Zero Calculus
2018年11月28日(水) テーマ:数学
Sangaku Journal of Mathematics (SJM) ⃝c SJM ISSN 2534-9562 Volume 2 (2018), pp. 57-73 Received 20 November 2018. Published on-line 29 November 2018 web: http://www.sangaku-journal.eu/ ⃝c The Author(s) This article is published with open access1 . Wasan Geometry and Division by Zero Calculus
file:///C:/Users/saito%20saburo/Downloads/SJM_2018_57-73_okumura_saitoh%20(1).pdf

0 件のコメント:

コメントを投稿