2016年1月31日日曜日

ゼロ除算(division by zero)

NEW !
テーマ:
ゼロ除算
ゼロ除算(ゼロじょざん、division by zero)は、0 で除す割り算のことである。このような除算は除される数を a とするならば、形式上は a⁄0 と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定にまったく依存している話である。少なくとも通常の実数の体系とその算術においては、意味のある式ではない。
コンピュータなど計算機においても、ゼロ除算に対するふるまいは様々である。たとえば浮動小数点数の扱いに関する標準であるIEEE 754では、数とは異なる無限大を表現するものが結果となる。他には、例外が起きてプログラムの中断を引き起こすかもしれないし、例えばナイーブに取尽し法を実行しようとしたなら無限ループに陥るか、なんらかの最大値のようなものが結果となるかもしれない。
計算尺では、対数尺には0に相当する位置が存在しない(無限の彼方である)ため不可能である。
目次 [非表示]
1 算数的解釈
2 初期の試み
3 代数学的解釈
3.1 ゼロ除算に基づく誤謬
4 解析学的解釈
4.1 ゼロ除算と極限
4.2 リーマン球面
5 コンピュータにおけるゼロ除算
6 ポップカルチャー
7 脚注
8 参考文献
9 関連項目
10 外部リンク
算数的解釈[編集]
算数レベルでは、除算は何らかの物の集合をそれぞれ同数になるように分けることで説明される。例えば、10個のリンゴを5人で分ける場合、各人は 10 ÷ 5 = 2個のリンゴを受け取ることになる。同様に、10個のリンゴを1人で分ける場合、各人は 10 ÷ 1 = 10個のリンゴを受け取る。
この考え方を使ってゼロ除算を説明できる。10個のリンゴを0人で分けるとする。各人は何個のリンゴを受け取るだろうか? 10 ÷ 0 を計算しようとしても、元の設問自体が無意味なので無意味となる。この場合、各人が受け取る個数は、0個でも、10個でも、無限個でもない。なぜなら、元々受け取るべき人はいないからである。以上のように算数レベルで考える場合、ゼロ除算は無意味または未定義となる。
ゼロ除算の未定義性を理解する別の方法として、減法の繰り返し適用という考え方がある。すなわち、余りが除数より少なくなるまで除数を繰り返し引くのである。たとえば 13 ÷ 5 を考えると、13 から 5 は 2 回引くことができ、余りは 3 となる。結果は 13 ÷ 5 = 2 あまり 3 などと記される。ゼロ除算の場合、ゼロを何度引いても余りがゼロより小さくなることはないため、無限に減法を繰り返すだけとなる。
初期の試み[編集]
628年にブラーマグプタが著した『ブラーマ・スプタ・シッダーンタ』では、0 を数として定義し、その演算結果も定義している。しかし、ゼロ除算の説明は間違っていた。彼の定義に従うと代数的不合理が生じることを簡単に証明できる。ブラーマグプタによれば、次の通りである。
「正または負の数をゼロで割ると、分母がゼロの分数となる。ゼロを正または負の数で割ると、ゼロになるか、またはゼロを分子とし有限数を分母とする分数になる。ゼロをゼロで割るとゼロになる」
830年、マハーヴィーラはブラーマグプタの間違いを著書 『ガニタ・サーラ・サングラハ』で以下のように訂正しようとして失敗した。
「数はゼロで割っても変化しない」
バースカラ2世は n⁄0 = ∞ と定義することで問題を解決しようとした。この定義はある意味では正しいが、後述の「ゼロ除算と極限」に示す問題もあり、注意深く扱わないとパラドックスに陥る。このパラドックスは近年まで考察されなかった[1]。
代数学的解釈[編集]
ゼロ除算を数学的に扱う自然な方法は、まず除算を他の算術操作で定義することで得られる。整数、有理数、実数、複素数の一般的算術規則では、ゼロ除算は未定義である。体の公理体系に従う数学的体系では、ゼロ除算は未定義のままとされなければならない。その理由は、除法が乗法の逆演算として定義されているためである。つまり、a⁄b の値は、bx = a という方程式を x について解いたときに値が一意に定まる場合のみ存在する。さもなくば、値は未定義のままとされる。
b = 0 のとき、方程式 bx = a は 0x = a または単に 0 = a と書き換えられる。つまりこの場合、方程式 bx = a は a が 0 でないときには解がなく、a が 0 であれば任意の x が解となりうる。いずれにしても解は一意に定まらず、a⁄b は未定義となる。逆に、体においては a⁄b は b がゼロでないとき常に一意に定まる。
ゼロ除算に基づく誤謬[編集]
ゼロ除算を代数学的記述に用いて、例えば以下のように 1 = 2 のような誤った証明を導くことができる。
以下を前提とする。
0 \times 1 = 0\quad
0 \times 2 = 0\quad
このとき、次が成り立つ。
0 \times 1 = 0 \times 2
両辺をゼロ除算すると、次のようになる。
\textstyle \frac{0}{0}\times 1 = \frac{0}{0}\times 2
これを簡約化すると次のようになる。
1 = 2\quad
この誤謬は、暗黙のうちに 0⁄0 = 1 であるかのように扱っていることから生じる。
上の証明が間違いであることは多くの人が気づくと思われるが、これをもっと巧妙に表現すると間違いを分かりにくくできる。例えば、1 を x と y に置き換え、ゼロを x - y、2 を x + y で置き換える。すると上記の証明は次のようになる。
(x-y)x = x^2-xy = 0
(x-y)(x+y) = x^2-y^2 = 0
したがって、
(x-y)x = (x-y)(x+y)
両辺を x - y で割ると次のようになる。
x = x+y
x = y = 1 を代入すると、次のようになる。
1 = 2
解析学的解釈[編集]
ゼロ除算と極限[編集]

関数 y =
1
x
のグラフ。x が 0 に近づくと、y は無限大に近づく。
直観的に
a
0

a
b
で 正数b を 0 に漸近させたときの極限を考えることで定義されるように見える。
a が正の数の場合、次のようになる。
\lim_{b \to 0+} \frac{a}{b} =+\infty
a が負の数の場合、次のようになる。
\lim_{b \to 0+} \frac{a}{b} =-\infty
したがって、a が正のとき
a
0
を +∞、a が負のとき -∞ と定義できるように思われる。しかし、この定義には2つの問題点がある。
第一に、正と負の無限大は実数ではない。実数の範囲内で考えたい場合、この定義には意味がない。この定義を使いたければ、何らかの形で実数を拡張する必要がある。
第二に、右側から極限に漸近するのは恣意的である。左側から漸近して極限を求めた場合、a が正の場合に a⁄0 が -∞ となり、a が負の場合に +∞ となる。これを等式で表すと次のようになる。
+\infty =\frac{1}{0} =\frac{1}{-0} =-\frac{1}{0} =-\infty
このように、+∞ と -∞ が等しいことになってしまい、これではあまり意味がない。これを意味のある拡張とするには、「符号のない無限大」という概念を導入するしかない。
実数に、正負の区別が有る、あるいは無い、無限大が含まれるように拡張したものが拡大実数である。アフィン拡大実数では区別が有り、射影拡大実数では区別が無い(無限遠点)。
物理学においてはブラックホールや宇宙の始まりを考察する際に質量/体積(密度)の体積が 0 となる特異点が発生するためゼロ除算による無限大発散の難問が生じている。この場合質量・体積は正であるため正の無限大への発散となる。
直接のゼロ除算以外では、三角関数の tan 90° などの計算においても、同様の問題が生じてしまう。
0
0
についても、極限
\lim_{(a,b)\to (0,0)} \frac{a}{b}
は存在しないため、うまく定義できない。さらに一般に、x が 0 に漸近すると共に f(x) も g(x) も 0 に漸近するとして、極限
\lim_{x\to 0} \frac{f(x)}{g(x)}
を考えても、これは任意の値に収束する可能性もあるし、収束しない可能性もある。したがって、この手法では 0⁄0 について意味のある定義は得られない。
リーマン球面[編集]
リーマン球面は、複素平面に無限遠点 ∞ の1点を付け加えて得られるもの C ∪ {∞} である。上記実射影直線(射影拡大実数)の複素数版とも考えられる。リーマン球面は複素解析において重要な概念であり、演算は例えば 1/0 = ∞、1/∞ = 0、などとなるが、∞+∞ や 0/0 は定義されない。
コンピュータにおけるゼロ除算[編集]

SpeedCrunchという電卓ソフトでゼロ除算を実行したときの様子。エラーが表示されている。
現在のほとんどのコンピュータでサポートされているIEEE 754 浮動小数点に関する標準規格では、全ての浮動小数点演算を定義している。ゼロ除算も例外ではなく、どういう値になるかが定義されている。IEEE 754の定義によれば、a/0 で a が正の数であれば、除算の結果は正の無限大となり、a が負の数であれば負の無限大となる。そして、a も 0 であった場合、除算結果は NaN(not a number、数でない)となる。IEEE 754 には -0 も定義されているため、0 の代わりに -0 で除算をした場合は、上述の符号が反転する。
整数のゼロ除算は通常、浮動小数点とは別に処理される。というのは整数ではゼロ除算の結果を表す方法がないためである。 多くのプロセッサは整数のゼロ除算を実行しようとすると例外を発生させる。この例外に対する対処がなされていない場合、ゼロ除算を実行しようとしたプログラムは強制終了(アボート)される。これは、ゼロ除算がエラーと解釈されるためで、エラーメッセージが表示されることも多い。
1997年、民生品の応用を研究していたアメリカ海軍はタイコンデロガ級ミサイル巡洋艦ヨークタウンを改造して主機のガスタービンエンジンの制御にマイクロソフトのソフトウェアを採用したが、試験航行中にデータベースのゼロ除算が発生してソフトウェアが例外を返し、結果として主機が停止、回復するまでカリブ海を2時間半ほど漂流する事態となっている[2]。https://ja.wikipedia.org/wiki/%E3%82%BC%E3%83%AD%E9%99%A4%E7%AE%97

再生核研究所声明280(2016.01.29) ゼロ除算の公認、認知を求める

ゼロで割ること、すなわち、ゼロ除算は、西暦628年インドでゼロが記録されて以来の懸案の問題で、神秘的な話題を提供してきた。最新の状況については声明279を参照。ゼロ除算は 数学として完全な扱いができたばかりか、結果が世の普遍的な現象を表現していることが実証された。それらは3篇の論文に公刊され、第4論文も出版が決まり、さらに4篇の論文原稿があり、討論されている。2つの招待された国際会議で報告され、日本数学会でも2件発表された。また、ゼロ除算の解説(2015.1.14;14ページ)を1000部印刷配布、広く議論している。さらに, インターネット上でも公開で解説している:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku
最近、3つの研究グループに遭遇した:

論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。

これらの理論は、いずれも不完全、人為的で我々が確定せしめたゼロ除算が、確定的な数学であると考える。世では、未だゼロ除算について不可思議な議論が続いているが、数学的には既に確定していると考える。
ゼロ除算について、不可能であるとの認識、議論は、簡単なゼロ除算について 1300年を超える過ちであり、数学界の歴史的な汚点である。そのために数学を始め、物理学や世界の文化の発展を遅らせ、それで、人類は 猿以下の争いを未だ続けていると考えられる。
数学界は この汚名を速やかに晴らして、数学の欠陥部分を修正、補充すべきである。 そして、今こそ、アインシュタインの数学不信を晴らすべきときである。数学とは本来、完全に美しく、永遠不滅の、絶対的な存在である。― 実際、数学の論理の本質は 人類が存在して以来 どんな変化も認められない。数学は宇宙の運動のように人間を離れた存在である。
再生核研究所声明で述べてきたように、ゼロ除算は、数学、物理学ばかりではなく、広く人生観、世界観、空間論を大きく変え、人類の夜明けを切り拓く指導原理になるものと考える。
そこで、発見から、2年目を迎えるのを期に、世の影響力のある方々に ゼロ除算の結果の公認、社会的に 広い認知が得られるように 協力を要請したい。

文献:

1) J. P. Barukcic and I. Barukcic, Anti Aristotle - The Division Of Zero By Zero,
ViXra.org (Friday, June 5, 2015)
© Ilija Barukčić, Jever, Germany. All rights reserved. Friday, June 5, 2015 20:44:59.

2) J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

3) M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI:10.12732/ijam.v27i2.9. 

4) H. Michiwaki, S. Saitoh, and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM (International J. of Applied Physics and Math. 6(2015), 1--8.  http://www.ijapm.org/show-63-504-1.html

5) T. S. Reis and James A.D.W. Anderson,
Transdifferential and Transintegral Calculus, Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I WCECS 2014, 22-24 October, 2014, San Francisco, USA

6) T. S. Reis and James A.D.W. Anderson,
Transreal Calculus, IAENG International J. of Applied Math., 45: IJAM_45_1_06.

7) S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

7) S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no.2. 369-380.

8) Saitoh, S., A reproducing kernel theory with some general applications (31pages)ISAAC (2015) Plenary speakers 13名 による本が スプリンガーから出版される。

以 上


再生核研究所声明 279(2016.01.28) ゼロ除算の意義

ここでは、ゼロ除算発見2周年目が近づいた現時点における ゼロ除算100/0=0, 0/0=0の意義を箇条書きで纏めて置こう。

1)。西暦628年インドでゼロが記録されて以来 ゼロで割るという問題 に 簡明で、決定的な解決をもたらした。数学として完全な扱いができたばかりか、結果が世の普遍的な現象を表現していることが実証された。それらは3篇の論文に公刊され、第4論文も出版が決まり、さらに4篇の論文原稿があり、討論されている。2つの大きな国際会議で報告され、日本数学会でも2件発表され、ゼロ除算の解説(2015.1.14;14ページ)を1000部印刷配布、広く議論している。また, インターネット上でも公開で解説している:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku
2) ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立された。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていて、特殊相対性理論やブラックホールなどの扱いに重要な新しい視点を与える。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。次のような極めて重要な言葉に表されている:
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970
5)複素解析学では、1次分数変換の美しい性質が、ゼロ除算の導入によって、任意の1次分数変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な定理は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、ゼロ除算にいう、解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。

11)ゼロ除算が可能であるか否かの議論について:

現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかの未知の分野が望めて、大いに期待できる世界が拓かれる。

12)ゼロ除算は、数学ばかりではなく、人生観、世界観や文化に大きな影響を与える。
次を参照:

再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観 。

ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として受け入れることである。

13) ゼロ除算は ユークリッド幾何学にも基本的に現れ、いわば、素朴な無限遠点に関係するような平行線、円と直線の関係などで本質的に新しい現象が見つかり、現実の現象の説明に合致する局面が拓かれた。

14) 最近、3つのグループの研究に遭遇した:

論理、計算機科学 代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の検討(T. S. Reis and James A.D.W. Anderson)。

これらの理論は、いずれも不完全、人為的で我々が確定せしめたゼロ除算が、確定的な数学であると考えられる。世では、未だゼロ除算について不可思議な議論が続いているが、数学的には既に確定していると考えられる。

そこで、これらの認知を求め、ゼロ除算の研究の促進を求めたい:

再生核研究所声明 272(2016.01.05): ゼロ除算の研究の推進を、
再生核研究所声明259(2015.12.04): 数学の生態、旬の数学 ―ゼロ除算の勧め。

以 上


Impact of ‘Division by Zero’ in Einstein’s Static Universe and Newton’s Equations in Classical Mechanics. Ajay Sharma physicsajay@yahoo.com Community Science Centre. Post Box 107 Directorate of Education Shimla 171001 India

KeyWords Aristotle, Universe, Einstein, Newton http://gsjournal.net/Science-Journals/Research%20Papers-Relativity%20Theory/Download/2084


再生核研究所声明 278(2016.01.27): 面白いゼロ除算の混乱と話題

Googleサイトなどを参照すると ゼロ除算の話題は 膨大であり、世にも珍しい現象と言える(division by zero: 約298 000 000結果(0.51秒)
検索結果
ゼロ除算 - ウィキペディア、フリー百科事典
https://en.wikipedia.org/wiki/ Division_by_zero
このページを翻訳
数学では、ゼロ除算は、除数(分母)がゼロである部門です。このような部門が正式に配当である/ 0をエスプレッソすることができます(2016.1.19.13:45)).

問題の由来は、西暦628年インドでゼロが記録され、四則演算が考えられて、1300年余、ゼロでは割れない、ゼロで割ることを考えてはいけないは 1000年を超える世界史の常識であり、天才オイラーは それは、1/0は無限であるとの論文を書き、無限遠点は 複素解析学における100年を超える定説、確立した学問である。割り算を掛け算の逆と考えれば、ゼロ除算が不可能であることは 数学的に簡単に証明されてしまう。しかしながら、アリストテレスの世界観、ゼロの概念、無とか、真空の概念での不可思議さゆえに2000年を超えて、議論され、そのため、ゼロ除算は 神秘的な話題 を提供させてきた。
確定した数学に対していろいろな存念が湧き、話題が絶えないことは 誠に奇妙なことと考えられる。ゼロ除算には 何か問題があるのだろうか。
先ず、多くの人の素朴な疑問は、加減乗除において、ただひとつの例外、ゼロで割ってはいけないが、奇妙に見えることではないだろうか。例外に気を惹くは 何でもそうであると言える。しかしながら、より広範に湧く疑問は、物理の基本法則である、ニュートンの万有引力の法則,アインシュタインの特殊相対性理論に ゼロ除算が公式に現れていて、このような数学の常識が、物理的に解釈できないジレンマを深く内蔵してきた。実際、ゼロ除算の歴史は ニュートンやアインシュタインを悩ましてきたと考えられる。
ニュートンの万有引力の法則においては 2つの質点が重なった場合の扱いであるが、アインシュタインの特殊相対性理論においては ローレンツ因子 にゼロになる項があるからである。
特にこの点では、深刻な矛盾、問題を抱えていた。
特殊相対性理論では、光速の速さで運動しているものの質量はゼロであるが、光速に近い速さで運動するものの質量(エネルギー)が無限に発散しているのに、ニュートリノ素粒子などが、光速に極めて近い速度で運動しているにも拘わらず 小さな質量、エネルギーを有しているという矛盾である。それゆえにブラックホール等の議論とともに話題を賑わしてきている。最近でも特殊相対性理論とゼロ除算、計算機科学や論理の観点でゼロ除算が学術的に議論されている。次のような極めて重要な言葉が残されている:
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970

スマートフォン等で、具体的な数字をゼロで割れば、答えがまちまち、いろいろなジョーク入りの答えが出てくるのも興味深い。しかし、計算機がゼロ除算にあって、実際的な障害が起きた:

ヨークタウン (ミサイル巡洋艦)ヨークタウン(USS Yorktown, DDG-48/CG-48)は、アメリカ海軍のミサイル巡洋艦。タイコンデロガ級ミサイル巡洋艦の2番艦。艦名はアメリカ独立戦争のヨークタウンの戦いにちなみ、その名を持つ艦としては5隻目。
艦歴[編集]
1997年9月21日バージニア州ケープ・チャールズ沿岸を航行中に、乗組員がデータベースフィールドに0を入力したために艦に搭載されていたRemote Data Base Managerでゼロ除算エラーが発生し、ネットワーク上の全てのマシンのダウンを引き起こし2時間30分にわたって航行不能に陥った。 これは搭載されていたWindows NT 4.0そのものではなくアプリケーションによって引き起こされたものだったが、オペレーティングシステムの選択への批判が続いた。[1]
2004年12月3日に退役した。
出典・脚注[編集]
1. ^ Slabodkin, Gregory (1998年7月13日). “Software glitches leave Navy Smart Ship dead in the water”. Government Computer News. 2009年6月18日閲覧。
 これはゼロ除算が不可能であるから、計算機がゼロ除算にあうと、ゼロ除算の誤差動で重大な事故につながりかねないことを実証している。それでゼロ除算回避の数学を考えている研究者もいる。論理や計算機構造を追求して、代数構造を検討したり、新しい数を導入して、新しい数体系を提案している。

確立している数学について話題が尽きないのは、思えば、ゼロ除算について、何か本質的な問題があるのだろうかと考えられる。 火のないところに煙は立たないという諺がある。 ゼロ除算は不可能であると 考えるか、無限遠点の概念、無限か と考えるのが 数百年間を超える数学の定説であると言える。
ところがその定説が、 思いがけない形で、完全に覆り、ゼロ除算は何時でも可能で、ゼロで割れば何時でもゼロになるという美しい結果が 2014.2.2 発見された。 結果は3篇の論文に既に出版され、日本数会でも発表され、大きな2つの国際会議でも報告されている。 ゼロ除算の詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku

また、再生核研究所声明の中でもいろいろ解説している。


以 上

Impact of ‘Division by Zero’ in Einstein’s Static Universe and Newton’s Equations in Classical Mechanics. Ajay Sharma physicsajay@yahoo.com Community Science Centre. Post Box 107 Directorate of Education Shimla 171001 India

Key Words Aristotle, Universe, Einstein, Newton http://gsjournal.net/Science-Journals/Research%20Papers-Relativity%20Theory/Download/2084

再生核研究所声明 277(2016.01.26):アインシュタインの数学不信 ― 数学の欠陥

(山田正人さん:散歩しながら、情念が湧きました:2016.1.17.10時ころ 散歩中)

西暦628年インドでゼロが記録され、四則演算が考えられて、1300年余、ようやく四則演算の法則が確立された。ゼロで割れば、何時でもゼロになるという美しい関係が発見された。ゼロでは割れない、ゼロで割ることを考えてはいけないは 1000年を超える世界史の常識であり、天才オイラーは それは、1/0は無限であるとの論文を書き、無限遠点は 複素解析学における100年を超える定説、確立した学問である。割り算を掛け算の逆と考えれば、ゼロ除算が不可能であることは 数学的に簡単に証明されてしまう。
しかしながら、ニュートンの万有引力の法則,アインシュタインの特殊相対性理論にゼロ除算は公式に現れていて、このような数学の常識が、物理的に解釈できないジレンマを深く内蔵してきた。そればかりではなく、アリストテレスの世界観、ゼロの概念、無とか、真空の概念での不可思議さゆえに2000年を超えて、議論され、そのため、ゼロ除算は 神秘的な話題 を提供させてきた。実際、ゼロ除算の歴史は ニュートンやアインシュタインを悩ましてきたと考えられる。
ニュートンの万有引力の法則においては 2つの質点が重なった場合の扱いであるが、アインシュタインの特殊相対性理論においては ローレンツ因子 にゼロになる項があるからである。
特にこの点では、深刻な矛盾、問題を抱えていた。
特殊相対性理論では、光速の速さで運動しているものの質量はゼロであるが、光速に近い速さで運動するものの質量(エネルギー)が無限に発散しているのに、ニュートリノ素粒子などが、光速に極めて近い速度で運動しているにも拘わらず 小さな質量、エネルギーを有しているという矛盾である。
そこで、この矛盾、ゼロ除算の解釈による矛盾に アインシュタインが深刻に悩んだものと思考される。実際 アインシュタインは 数学不信を公然と 述べている:

What does Einstein mean when he says, "I don't believe in math"?
https://www.quora.com/What-does-Einstein-mean-when-he-says-I-dont-believe-in-math
アインシュタインの数学不信の主因は アインシュタインが 難解で抽象的な数学の理論に嫌気が差したものの ゼロ除算の間違った数学のためである と考えられる。(次のような記事が見られるが、アインシュタインが 逆に間違いをおかしたのかは 大いに気になる:Sunday, 20 May 2012
Einstein's Only Mistake: Division by Zero)

簡単なゼロ除算について 1300年を超える過ちは、数学界の歴史的な汚点であり、物理学や世界の文化の発展を遅らせ、それで、人類は 猿以下の争いを未だに続けていると考えられる。
数学界は この汚名を速やかに晴らして、数学の欠陥部分を修正、補充すべきである。 そして、今こそ、アインシュタインの数学不信を晴らすべきときである。数学とは本来、完全に美しく、永遠不滅の、絶対的な存在である。― 実際、数学の論理の本質は 人類が存在して以来 どんな変化も認められない。数学は宇宙の運動のように人間を離れた存在である。
再生核研究所声明で述べてきたように、ゼロ除算は、数学、物理学ばかりではなく、広く人生観、世界観、空間論を大きく変え、人類の夜明けを切り拓く指導原理になるものと思考される。
以 上

Impact of ‘Division by Zero’ in Einstein’s Static Universe and Newton’s Equations in Classical Mechanics. Ajay Sharma physicsajay@yahoo.com Community Science Centre. Post Box 107 Directorate of Education Shimla 171001 India

Key Words Aristotle, Universe, Einstein, Newton http://gsjournal.net/Science-Journals/Research%20Papers-Relativity%20Theory/Download/2084









tensor product

NEW !
テーマ:
数学におけるテンソル積(テンソルせき、英: tensor product)は、線型代数学で重線型性を扱うための線型化を担う概念で、既知のベクトル空間・加群など様々な対象から新たな対象を作り出す操作の一つである。そのようないずれの対象に関しても、テンソル積は最も自由(英語版)な双線型乗法(英語版)である。
共通の体 K 上の二つの ベクトル空間 V, W のテンソル積 V ⊗K W(基礎の体 K が明らかな時には V ⊗ W とも書く)はふたたびベクトル空間を成す。ベクトル空間のテンソル積を繰り返して得られるテンソル空間は物理的なテンソルを数学的に定式化する。テンソル空間に種々の積を入れてさまざまな多重線型代数・クリフォード代数が定式化されるが、その基本となる演算がテンソル積である。
目次 [非表示]
1 定義
1.1 基底を用いた定義
1.2 商としての定義
1.3 記法について
2 普遍性
3 線型写像のテンソル積
4 双対空間との関係
5 テンソル積と Hom の随伴性
6 種々のテンソル積
7 応用
7.1 係数拡大
7.2 表現のテンソル積
7.3 テンソル冪
7.4 テンソル空間
7.5 対称積・交代積
8 注釈
9 出典
10 参考文献
定義[編集]
基底を用いた定義[編集]
共通の体 F 上のベクトル空間 V, W に対して、V の基底 B = {ξ1, ξ2, …, ξn} および W の基底 B' = {η1, η2, …, ηm} をとるとき、これらの直積 B × B' が生成する nm-次元の自由ベクトル空間(英語版)
V \otimes_F W (= V\otimes W) := \operatorname{span}_F((\xi_i, \eta_j) \mid 1 \le i \le n, 1 \le j \le m)
を V と W との F 上のテンソル積と呼ぶ。V ⊗ W の元としての順序対 (ξi, ηj) は記号 "⊗" を用いて ξi ⊗ ηj と書くことにすれば、V × W の任意の元は適当な有限個のスカラー cij を用いて
\sum_{i,j} c_{ij}(\xi_i\otimes \eta_j)
の形の有限和に表される。これにより、任意のベクトル v ∈ V および w ∈ W のテンソル積 v ⊗ w が定義できる。実際、基底ベクトル ξ ∈ V と η ∈ W のテンソル積 ξ × η ∈ V ⊗ W は与えられているから、任意のベクトルの積はこれを双線型な仕方で拡張して得られる。すなわち
v=\sum_i a_i \xi_i,\quad w = \sum_j b_j\eta_j
に対して、これらのテンソル積は
v\otimes w := \sum_{i,j} a_ib_j (\xi_i\otimes\eta_j)
と定められる。ベクトルのテンソル積は以下の性質を満たす: ベクトル v, v', v" ∈ V および w, w', w" ∈ W とスカラー λ ∈ F に対して
(v'+v'')\otimes w = v'\otimes w + v''\otimes w




(1)
v\otimes(w' + w'') = v\otimes w' + v\otimes w''




(2)
(\lambda v)\otimes w = \lambda(v\otimes w) = v\otimes(\lambda w)




(3)
すなわち、写像 ⊗: V × W → V ⊗ W; (v, w) ↦ v ⊗ w は F-双線型写像である。これらの性質は、テンソル積がベクトルの和に対して分配的であり、スカラー倍に対して結合的であるように捉えることができる(これらが「積」と呼ぶ由縁である)。
ベクトルのテンソル積は一般には可換でない。実際、V ≠ W のとき v ∈ V, w ∈ W に対して、それらのテンソル積は v ⊗ w ∈ V ⊗ W および w ⊗ v ∈ W ⊗ V で属する空間自体が異なる。また V = W のときでも v ⊗ w と w ⊗ v は一般には異なる。
商としての定義[編集]
一般に、体 K 上のベクトル空間 V, W が与えられたとき、それらのテンソル積 U = V ⊗ W は、デカルト積 V × W の生成する K-上の自由線型空間 F(V × W) の、
\begin{align}
&(v_1,w) + (v_2,w) \sim (v_1 + v_2,w) \\
&(v,w_1) + (v,w_2) \sim (v,w_1+w_2) \\
&c(v,w) \sim (cv,w) \sim (v,cw)
\end{align}\quad (v, v_1, v_2 \in V;\; w, w_1, w_2 \in W;\; c \in K)
で与えられる同値関係 ∼ による商として定義することができる。これは F(V × W) における演算から誘導される演算によりベクトル空間を成す。言葉を変えれば、テンソル積空間 V ⊗ W は上記の同値関係に関する零ベクトルの属する同値類を N とするときの商線型空間 F(V × W)/N である。より具体的に書けば、部分空間 N は 適当な v1, v2 ∈ V, w1, w2 ∈ W, c ∈ K を用いて
(v1, w1) + (v2, w1) - (v1 + v2, w1),
(v1, w1) + (v1, w2) - (v1, w1 + w2),
c(v1, w1) - (cv1, w1), c(v1, w1) - (v1, cw1)
の何れかの形に書ける F(V × W) の元全体から生成される。商を取れば N の元は零ベクトルに写されるから、v ⊗ w := (v, w) mod N と書けば、この場合もやはり
\begin{align}
& (v_1 \otimes w_1) + (v_2 \otimes w_1) = (v_1 + v_2)\otimes w_1,\\
& (v_1 \otimes w_1) + (v_1 \otimes w_2) = v_1\otimes(w_1+w_2),\\
& c(v_1\otimes w_1) = (cv_1)\otimes w_1 = v_1\otimes (c w_1)
\end{align}
が満足されることがわかる。
記法について[編集]
テンソル積空間 V ⊗ W の元はしばしばテンソルと呼ばれる(ただし、テンソルという用語はこれと関連のあるさまざまな概念に対しても用いられる[* 1])。v ∈ V と w ∈ W に対し、(v, w) の属する同値類を v ⊗ w と書いて v と w のテンソル積と呼ぶ。物理学や工学では、記号 "⊗" を二項積(直積)に対して用いるが、得られる二項積 v ⊗ w は同値類としての v ⊗ w を表現する標準的な方法の一つである[* 2]。V ⊗ W の元のうち v ⊗ w の形に書けるものは、基本テンソルあるいは単純テンソル(英語版)と呼ばれる。一般に、テンソル積空間の元は単純テンソルだけでなく、それらの有限線型結合も含まれる。例えば、v1, v2 が線型独立かつ w1, w2 が線型独立のとき v1 ⊗ w1 + v2 ⊗ w2 は単純テンソルに書くことはできない。テンソル積空間の元に対し、それを書き表すのに必要な単純テンソルの数を、そのテンソルの階数(英語版)という(テンソルの次数(英語版)と混同してはならない)。線型写像や行列を (1,1)-型テンソルと看做したときの、テンソルの意味での階数は行列の階数の概念に一致する。
普遍性[編集]

テンソル積の普遍性を表す可換図式
テンソル積は普遍性を用いて定義することもできる。この文脈では、テンソル積は同型を除いて一意的に定義される(ある意味でテンソル積はただ一つに決まるということ)。ベクトル空間のテンソル積は以下の普遍性を満たす:
テンソル積の普遍性
双線型写像 φ: V × W → V ⊗ W が存在して、任意のベクトル空間 Z と双線型写像 h: V × W → Z が与えられるとき、h =
~
h
∘ φ を満足する線型写像
~
h
: V ⊗ W → Z が一意に存在する。
この意味において、φ は V × W から作られる最も一般の双線型写像になっている。特に、これにより(一意的に定義される)テンソル積を持つ任意の空間の集まりが対称モノイド圏(英語版)の例となることが導かれる。テンソル積の一意性は、上記の性質を満たす任意の双線型写像 φ': V × W → V ⊗' W に対し、同型写像 k: V ⊗ W → V ⊗' W が存在して φ' = k ∘ φ を満足することを言う。
この特徴付けを用いるとテンソル積に関する主張を簡明に示すことができる。例えば、テンソル積が対称であること、すなわち自然同型
V \otimes W \cong W \otimes V
が存在すること。左辺から右辺への写像を構成するには、普遍性により、適当な双線型写像 V × W → W ⊗ V を与えることが十分である。ここでは、(v, w) を w ⊗ v に写す写像を与えればよい。反対方向の写像も同様に定義して、それら二つの線型写像 V ⊗ W → W ⊗ V と W ⊗ V → V ⊗ W が互いに他方の逆写像となっていることを確認して証明は完成する。
同様にしてテンソル積の結合性、すなわち自然同型
V_1\otimes(V_2\otimes V_3)\cong (V_1\otimes V_2)\otimes V_3
の存在も証明できる。これにより、この互いに同型な空間を、括弧を落として V1 ⊗ V2 ⊗ V3 のようにも書く。
線型写像のテンソル積[編集]
ベクトル空間の間の線型写像にもテンソル積を定義することができる。具体的に二つの線型写像 S: V → X および T: W → Y が与えられたとき、S と T とのテンソル積 S ⊗ T: V ⊗ W → X ⊗ Y は
(S\otimes T)(v\otimes w)=S(v)\otimes T(w)
で与えられる。これによりテンソル積構成はベクトル空間の圏(英語版) からそれ自身への双函手(英語版)となり、これは各引数に関してともに共変である[1]。
線型写像 S, T がともに単射、全射または連続ならば、テンソル積 S ⊗ T もそれぞれ単射、全射または連続となる。
現れるベクトル空間にそれぞれ基底をとれば、線型写像 S, T はそれぞれ行列で表現され、さらにテンソル積 S ⊗ T を表現する行列は、S, T を表す行列のクロネッカー積で与えられる。具体的に書けば、線型写像 S および T がそれぞれ行列 A = (aij) および B で表されるとき、S ⊗ T は区分行列
A\otimes B := (a_{ij}B) = \begin{pmatrix}
a_{11}B & a_{12}B & \dots \\
a_{21}B & a_{22}B & \dots \\
\vdots & \vdots & \ddots
\end{pmatrix}
で表される。
より一般に、多重線型写像 f(x1, …, xk), g(x1, …, xm) に対して、それらのテンソル積は
(f \otimes g) (x_1,\dots,x_{k+m}) = f(x_1,\dots,x_k) g(x_{k+1},\dots,x_{k+m})
なる多重線型写像として与えられる。
双対空間との関係[編集]
また、K 上のベクトル空間 V から W への K-線型写像の全体 L(V, W) は双対空間 V∗ を用いれば
V^* \otimes W \to L(V,W);\; (f,w) \mapsto f(\bullet)w
なる線型同型によってテンソル積で書き表せる。もっと一般に、n 個のベクトル空間 W1, …, Wn のテンソル積はこれらの双対空間からの n 重線型形式の空間 L(W1∗, …, Wn∗; F) とのあいだに同型
W_1\otimes\cdots\otimes W_n \cong L(W_1^*,\ldots,W_n^*;F)
を持つことによって特徴付けられる。
V とその双対空間 V∗ に対して、自然な「評価」写像
V \otimes V^* \to K
が単純テンソルの上では
v \otimes f \mapsto f(v)
を満たすものとして普遍性により定義される。他方 V が「有限次元」ならば逆向きの写像(余評価写像(英語版))
K \to V \otimes V^*;\; \lambda \mapsto \sum_i \lambda v_i \otimes v^*_i
が存在する。ただし、{v1, …, vn} は V の基底、{vi∗} はその双対基底である。この評価写像と余評価写像との間に成り立つ関係は無限次元ベクトル空間をその基底に言及することなく特徴づけることができる(コンパクト閉圏(英語版)の項を参照)。
テンソル積と Hom の随伴性[編集]
ベクトル空間 U, V, W に対して、テンソル積と全線型変換の空間とは
\operatorname{Hom} (U \otimes V, W) \cong \operatorname{Hom} (U, \operatorname{Hom}(V, W))
で表される関係を持つ。ここに Hom(-, -) は線型変換全体の成す空間である。これは随伴対の例であり、テンソル積函手 ⊗ はHom-函手の「左随伴」であると言い表すことができる。
種々のテンソル積[編集]
加群のテンソル積: 可換環 R 上の加群に関してはベクトル空間のテンソル積と同じ形の関係式による商加群として(あるいは同じ形の普遍性により)加群のテンソル積が定義され、ふたたび R-加群となる。R が非可換環の場合には、スカラー倍に関する条件を少し変えて加群の間のテンソル積が定義されるが、それは単なるアーベル群(Z-加群)として得られる。
多元環のテンソル積: 単位的可換環 K 上の多元環 A, B に対し、K 上の加群としてのテンソル積には、(α ⊗ β)(α' ⊗ β') = (αα')⊗(ββ') (∀α, α' ∈ A, β, β' ∈ B) となるような乗法が一意的に定義できて K 上の多元環となる。
加群の層のテンソル積(英語版)
ヒルベルト空間のテンソル積(英語版)
位相線型空間のテンソル積(英語版)
次数付き線型空間のテンソル積(英語版)
二次形式のテンソル積(英語版)
グラフのテンソル積(英語版)
テンソル積の最も一般の形はモノイド圏におけるモノイド積 (monoidal product) として定式化することができる。
応用[編集]
係数拡大[編集]
詳細は「係数拡大(英語版)」を参照
K 上のベクトル空間 V と、K の拡大体 L をとれば、L を K-ベクトル空間と見てのテンソル積
V_L:=V\otimes_KL
が定義できて、L の作用を
\lambda(v\otimes\mu) := v\otimes(\lambda\mu)\quad(v\in V,\,\lambda,\mu\in L)
で定めると、VL は L 上のベクトル空間になる。ベクトル空間 VL の L 上の次元は V の K 上の次元に等しい。これは V の K 上の基底 B に対して、集合
\{b\otimes 1 \mid b \in B\}
が VL の L 上の基底を与えることから分かる。
表現のテンソル積[編集]
群 G の同じ体上のベクトル空間 Vi における表現
\rho_i\colon G\to GL(V_i) (i=1,\ldots,n)
が与えられたとき
\rho_1(g)v_1\otimes\dotsb\otimes \rho_n(g)v_n\quad (\forall g\in G,\,v_i\in V_i)
に対してテンソル積の普遍性を適用することにより、表現のテンソル積
\rho_1\otimes\dotsb\otimes \rho_n\colon G\to GL(V_1\otimes\dotsb\otimes V_n)
が誘導される。
テンソル冪[編集]
詳細は「テンソル代数」を参照
非負整数 n に対し、ベクトル空間 V の n-次テンソル冪とは V 自身の n-重テンソル積
V^{\otimes n} \stackrel{\text{def}}{{}={}} \underbrace{V\otimes\cdots\otimes V}_{n\text{ factors}}
を言う。n-次テンソル冪を斉 n-次成分に持つ次数付き線型空間(英語版) T(V) = ⊗n V⊗n はテンソル積を乗法としてテンソル代数と呼ばれる次数付き代数を成す。
テンソル空間[編集]
詳細は「テンソル空間」を参照
非負整数 r, s に対して (r, s)-型テンソル空間
T^r_s(V) = V^{\otimes r}\otimes V^{*\otimes s}
の r, s に関する無限直和としてのテンソル空間において、テンソル積
T^p_q(V)\otimes T^r_s(V) \to T^{p+r}_{q+s}(V)
は次数付きベクトル空間テンソル成分に対してはその積として得られる。
ベクトル v と線型形式 f に関して、 = f(v) は双線型であるから、テンソル積の普遍性によって縮約あるいは縮合 (contraction) と呼ばれる線型写像
T^p_q(V) \to T^{p-1}_{q-1}(V)
が一意的に引き起こされる。これは成分でみれば、上下に現れる同じ添字の打ち消しを行うことに等しい。これはまた Tp と Tp との双対性
T_p(V) = (V^*)^{\otimes p} \cong (V^{\otimes p})^* = (T^p(V))^*
を導く。
対称積・交代積[編集]
詳細は「対称テンソル」および「交代テンソル」を参照
「対称代数」および「外積代数」も参照
集合 {1, 2, …, n} の置換 σ は、ベクトル空間 V の n-次デカルト冪に対する写像
\sigma\colon V^n\to V^n;\; (v_1,v_2,\dots,v_n) \mapsto \sigma(v_1,v_2,\dots,v_n) = (v_{\sigma 1}, v_{\sigma 2},\dots,v_{\sigma n})
を誘導する。n-次デカルト冪から n-次テンソル冪への自然な多重線型埋め込み
\varphi\colon V^n \to V^{\otimes n}
に対してテンソル積の普遍性を適用すれば、一意的な同型
\tau_\sigma\colon V^{\otimes n} \to V^{\otimes n}\text{ s.t. }\varphi\circ\sigma = \tau_\sigma\circ\varphi
が得られる。同型写像 τσ は置換 σ に付随する組み紐写像 (braiding map) または置換作用素[2]と呼ばれる。置換作用素から導かれるテンソル代数 T(V) 上の対称化作用素 Sym および交代化作用素 Alt は、斉次成分 V⊗n 上で
\operatorname{Sym}_n := \frac{1}{n!}\sum_{\sigma\in \mathfrak{S}_n}\tau_\sigma,
\quad \operatorname{Alt}_n := \frac{1}{n!}\sum_{\sigma\in \mathfrak{S}_n} \sgn(\sigma)\cdot\tau_\sigma
を満たすものとすれば、k-階テンソル t および k'-階テンソル t' に対して
tt' = \operatorname{Sym}_{k+k'}(t\otimes t'),
\quad t \wedge t' = \operatorname{Alt}_{k+k'}(t\otimes t')
と置いたものは、それぞれ対称テンソル空間 S(V) および反対称テンソル空間 A(V) 上の双線型な乗法を与え、それぞれ対称(テンソル)積、交代(テンソル)積と呼ばれる(交代積は外積あるいはグラスマン積とも呼ばれる)。
「多重線型写像#対称性・反対称性・交代性」も参照https://ja.wikipedia.org/wiki/%E3%83%86%E3%83%B3%E3%82%BD%E3%83%AB%E7%A9%8D


\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}


\numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 275: The division by zero $z/0=0$ and special relative theory of Einstein
}

\author{{\it Institute of Reproducing Kernels}\\

\date{January 11, 2016}

\maketitle
{\bf Abstract: } In this announcement, for its importance, we will state a fundamental result for special relative theory of Einstein from the division by zero $z/0=0$.

\bigskip
{\bf Introduction}

\bigskip

%\label{sect1}
By {\bf a natural extension of the fractions}
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, the division by zero
\begin{equation}
\frac{b}{0}=0,
\end{equation}
is clear and trivial. See (\cite{msy}) for the recent results. See also the survey style announcements 179,185,237,246,247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252}). The division by zero is not only mathematical problems, but also it will give great impacts to human beings and the idea on the universe. The Institute of Reproducing Kernels is presenting various opinions in Announcements (many in Japanese) on the universe.

In this Announcement, for its importance, we will state a fundamental result for special relative theory of Einstein from the division by zero $z/0=0$. The contents were stated by Hiroshi Michiwaki in his memo dated on October 10, 2014 and we should state the results, more early.

\section{Special relative theory of Einstein}

Einstein's discovery of the equivalence of matter/mass and energy \cite{ein} in the year 1905 lies
at the core of today's modern physics. According to Albert Einstein \cite{einstein}, the rest-mass $m_0$, a
measure of the inertia of a (quantum mechanical) object is related to the relativistic mass $m_R$
by the equation, with relative velocity $v$ and the speed $c$ of light in vacuum,
\begin{equation}
m_0 = m_R \sqrt{1 - \frac{v^2}{c^2}}.
\end{equation}
Therefore, we obtain, immediately
\begin{equation}
m_R^2= m_0^2 \left(1 - \frac{v^2}{c^2}\right)^{-1}.
\end{equation}
Therefore, by the division by zero, we have the surprising result for $ v = c$:
\begin{equation}
m_R = 0.
\end{equation} It seems that the modern physical common sense is then $
m_R = + \infty$.

\bigskip

\section{ A conjecture by H. Michiwaki}
As his simple result (1.3) from the division by zero, Michiwaki stated his conjecture or interpretation for neutrino; neutrino are able to have small mass, because they are moved with near $c$ or $c$ velocity.
Indeed, we assume that $m_0$ is the mass of neutrino at the stopped case. As the experiment, we know that the velocity of neutrino is near to $c$ or $c$. So he thought
that neutrino will have small mass.

This result was realized positively by Takaaki Kajita by experiment and he got Novel Prize in 2015.

Furthermore, he referred to the very interesting interpretations of {\it photon of energy} and {\it Doppler effect} from the viewpoint of the division by zero in his memo.

\section{Acknowledgements}

This announcement was, of course, inspired by the paper \cite{bb} and for the very interesting relation with computer sciences and the division by zero, see \cite{bht}.

\bigskip

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{bb}
Barukcic J. P., and I. Barukcic, Anti Aristotle - The Division Of Zero By Zero,
ViXra.org (Friday, June 5, 2015)
© Ilija Barukčić, Jever, Germany. All rights reserved. Friday, June 5, 2015 20:44:59.

\bibitem{bht}
Bergstra, J. A., Hirshfeld Y., and Tucker, J. V.,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

\bibitem{cs}
Castro, L. P., and Saitoh, S. (2013).
Fractional functions and their representations. {\it Complex Anal. Oper. Theory {\bf7}, no. 4, }1049-1063.

\bibitem{ein}
Einstein, A. (1905) Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik, vol. 323, Issue 13, pp. 639-641,

\bibitem{einstein}
Einstein, A. (1905).
Zur Elektrodynamik bewegter Körper, Annalen der Physik, vol. 322, Issue 10, pp. 891-921.

\bibitem{kmsy}
Kuroda, M., Michiwaki, H., Saitoh, S., and Yamane, M. (2014).
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
{\it Int. J. Appl. Math. Vol. 27, No 2 }, 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
Michiwaki H., Saitoh S., and Yamada M. (2015).
Reality of the division by zero $z/0=0$. IJAPM (International J. of Applied Physics and Math. (to appear).

\bibitem{mst}
Michiwaki, H., Saitoh, S., and Takagi, M.
A new concept for the point at infinity and the division by zero z/0=0
(manuscript).

\bibitem{s}
Saitoh, S. (2014).
Generalized inversions of Hadamard and tensor products for matrices,
{\it Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 , 87-95.} http://www.scirp.org/journal/ALAMT/

\bibitem{taka}
Takahasi, S.-E. (2014).
{On the identities $100/0=0$ and $ 0/0=0$.}
(note)

\bibitem{ttk}
Takahasi, S.-E., Tsukada, M., and Kobayashi, Y. (2015).
{\it Classification of continuous fractional binary operations on the real and complex fields. } Tokyo Journal of Mathematics {\bf 8}, no.2(in press).

\bibitem{ann179}
Division by zero is clear as z/0=0 and it is fundamental in mathematics. {\it Announcement 179 (2014.8.30).}

\bibitem{ann185}
The importance of the division by zero $z/0=0$. {\it Announcement 185 (2014.10.22)}.

\bibitem{ann237}
A reality of the division by zero $z/0=0$ by geometrical optics. {\it Announcement 237 (2015.6.18)}.

\bibitem{ann246}
An interpretation of the division by zero $1/0=0$ by the gradients of lines. {\it Announcement 246 (2015.9.17)}.

\bibitem{ann247}
The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$. {\it Announcement 247 (2015.9.22)}.

\bibitem{ann250}
What are numbers? - the Yamada field containing the division by zero $z/0=0$. {\it Announcement 250 (2015.10.20)}.

\bibitem{ann252}
Circles and curvature - an interpretation by Mr. Hiroshi Michiwaki of the division by
zero $r/0 = 0$. {\it Announcement 252 (2015.11.1)}.

\end{thebibliography}



\end{document}

Reality of the Division by Zero $z/0=0$
http://www.ijapm.org/show-63-504-1.html

再生核研究所声明 277(2016.01.26):アインシュタインの数学不信 ― 数学の欠陥

(山田正人さん:散歩しながら、情念が湧きました:2016.1.17.10時ころ 散歩中)

西暦628年インドでゼロが記録され、四則演算が考えられて、1300年余、ようやく四則演算の法則が確立された。ゼロで割れば、何時でもゼロになるという美しい関係が発見された。ゼロでは割れない、ゼロで割ることを考えてはいけないは 1000年を超える世界史の常識であり、天才オイラーは それは、1/0は無限であるとの論文を書き、無限遠点は 複素解析学における100年を超える定説、確立した学問である。割り算を掛け算の逆と考えれば、ゼロ除算が不可能であることは 数学的に簡単に証明されてしまう。
しかしながら、ニュートンの万有引力の法則,アインシュタインの特殊相対性理論にゼロ除算は公式に現れていて、このような数学の常識が、物理的に解釈できないジレンマを深く内蔵してきた。そればかりではなく、アリストテレスの世界観、ゼロの概念、無とか、真空の概念での不可思議さゆえに2000年を超えて、議論され、そのため、ゼロ除算は 神秘的な話題 を提供させてきた。実際、ゼロ除算の歴史は ニュートンやアインシュタインを悩ましてきたと考えられる。
ニュートンの万有引力の法則においては 2つの質点が重なった場合の扱いであるが、アインシュタインの特殊相対性理論においては ローレンツ因子 にゼロになる項があるからである。
特にこの点では、深刻な矛盾、問題を抱えていた。
特殊相対性理論では、光速の速さで運動しているものの質量はゼロであるが、光速に近い速さで運動するものの質量(エネルギー)が無限に発散しているのに、ニュートリノ素粒子などが、光速に極めて近い速度で運動しているにも拘わらず 小さな質量、エネルギーを有しているという矛盾である。
そこで、この矛盾、ゼロ除算の解釈による矛盾に アインシュタインが深刻に悩んだものと思考される。実際 アインシュタインは 数学不信を公然と 述べている:

What does Einstein mean when he says, "I don't believe in math"?
https://www.quora.com/What-does-Einstein-mean-when-he-says-I-dont-believe-in-math
アインシュタインの数学不信の主因は アインシュタインが 難解で抽象的な数学の理論に嫌気が差したものの ゼロ除算の間違った数学のためである と考えられる。(次のような記事が見られるが、アインシュタインが 逆に間違いをおかしたのかは 大いに気になる:Sunday, 20 May 2012
Einstein's Only Mistake: Division by Zero)

簡単なゼロ除算について 1300年を超える過ちは、数学界の歴史的な汚点であり、物理学や世界の文化の発展を遅らせ、それで、人類は 猿以下の争いを未だに続けていると考えられる。
数学界は この汚名を速やかに晴らして、数学の欠陥部分を修正、補充すべきである。 そして、今こそ、アインシュタインの数学不信を晴らすべきときである。数学とは本来、完全に美しく、永遠不滅の、絶対的な存在である。― 実際、数学の論理の本質は 人類が存在して以来 どんな変化も認められない。数学は宇宙の運動のように人間を離れた存在である。
再生核研究所声明で述べてきたように、ゼロ除算は、数学、物理学ばかりではなく、広く人生観、世界観、空間論を大きく変え、人類の夜明けを切り拓く指導原理になるものと思考される。
以 上

Impact of ‘Division by Zero’ in Einstein’s Static Universe and Newton’s Equations in Classical Mechanics. Ajay Sharma physicsajay@yahoo.com Community Science Centre. Post Box 107 Directorate of Education Shimla 171001 India

Key Words Aristotle, Universe, Einstein, Newton http://gsjournal.net/Science-Journals/Research%20Papers-Relativity%20Theory/Download/2084

再生核研究所声明 278(2016.01.27): 面白いゼロ除算の混乱と話題

Googleサイトなどを参照すると ゼロ除算の話題は 膨大であり、世にも珍しい現象と言える(division by zero: 約298 000 000結果(0.51秒)
検索結果
ゼロ除算 - ウィキペディア、フリー百科事典
https://en.wikipedia.org/wiki/ Division_by_zero
このページを翻訳
数学では、ゼロ除算は、除数(分母)がゼロである部門です。このような部門が正式に配当である/ 0をエスプレッソすることができます(2016.1.19.13:45)).

問題の由来は、西暦628年インドでゼロが記録され、四則演算が考えられて、1300年余、ゼロでは割れない、ゼロで割ることを考えてはいけないは 1000年を超える世界史の常識であり、天才オイラーは それは、1/0は無限であるとの論文を書き、無限遠点は 複素解析学における100年を超える定説、確立した学問である。割り算を掛け算の逆と考えれば、ゼロ除算が不可能であることは 数学的に簡単に証明されてしまう。しかしながら、アリストテレスの世界観、ゼロの概念、無とか、真空の概念での不可思議さゆえに2000年を超えて、議論され、そのため、ゼロ除算は 神秘的な話題 を提供させてきた。
確定した数学に対していろいろな存念が湧き、話題が絶えないことは 誠に奇妙なことと考えられる。ゼロ除算には 何か問題があるのだろうか。
先ず、多くの人の素朴な疑問は、加減乗除において、ただひとつの例外、ゼロで割ってはいけないが、奇妙に見えることではないだろうか。例外に気を惹くは 何でもそうであると言える。しかしながら、より広範に湧く疑問は、物理の基本法則である、ニュートンの万有引力の法則,アインシュタインの特殊相対性理論に ゼロ除算が公式に現れていて、このような数学の常識が、物理的に解釈できないジレンマを深く内蔵してきた。実際、ゼロ除算の歴史は ニュートンやアインシュタインを悩ましてきたと考えられる。
ニュートンの万有引力の法則においては 2つの質点が重なった場合の扱いであるが、アインシュタインの特殊相対性理論においては ローレンツ因子 にゼロになる項があるからである。
特にこの点では、深刻な矛盾、問題を抱えていた。
特殊相対性理論では、光速の速さで運動しているものの質量はゼロであるが、光速に近い速さで運動するものの質量(エネルギー)が無限に発散しているのに、ニュートリノ素粒子などが、光速に極めて近い速度で運動しているにも拘わらず 小さな質量、エネルギーを有しているという矛盾である。それゆえにブラックホール等の議論とともに話題を賑わしてきている。最近でも特殊相対性理論とゼロ除算、計算機科学や論理の観点でゼロ除算が学術的に議論されている。次のような極めて重要な言葉が残されている:
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970

スマートフォン等で、具体的な数字をゼロで割れば、答えがまちまち、いろいろなジョーク入りの答えが出てくるのも興味深い。しかし、計算機がゼロ除算にあって、実際的な障害が起きた:

ヨークタウン (ミサイル巡洋艦)ヨークタウン(USS Yorktown, DDG-48/CG-48)は、アメリカ海軍のミサイル巡洋艦。タイコンデロガ級ミサイル巡洋艦の2番艦。艦名はアメリカ独立戦争のヨークタウンの戦いにちなみ、その名を持つ艦としては5隻目。
艦歴[編集]
1997年9月21日バージニア州ケープ・チャールズ沿岸を航行中に、乗組員がデータベースフィールドに0を入力したために艦に搭載されていたRemote Data Base Managerでゼロ除算エラーが発生し、ネットワーク上の全てのマシンのダウンを引き起こし2時間30分にわたって航行不能に陥った。 これは搭載されていたWindows NT 4.0そのものではなくアプリケーションによって引き起こされたものだったが、オペレーティングシステムの選択への批判が続いた。[1]
2004年12月3日に退役した。
出典・脚注[編集]
1. ^ Slabodkin, Gregory (1998年7月13日). “Software glitches leave Navy Smart Ship dead in the water”. Government Computer News. 2009年6月18日閲覧。
 これはゼロ除算が不可能であるから、計算機がゼロ除算にあうと、ゼロ除算の誤差動で重大な事故につながりかねないことを実証している。それでゼロ除算回避の数学を考えている研究者もいる。論理や計算機構造を追求して、代数構造を検討したり、新しい数を導入して、新しい数体系を提案している。

確立している数学について話題が尽きないのは、思えば、ゼロ除算について、何か本質的な問題があるのだろうかと考えられる。 火のないところに煙は立たないという諺がある。 ゼロ除算は不可能であると 考えるか、無限遠点の概念、無限か と考えるのが 数百年間を超える数学の定説であると言える。
ところがその定説が、 思いがけない形で、完全に覆り、ゼロ除算は何時でも可能で、ゼロで割れば何時でもゼロになるという美しい結果が 2014.2.2 発見された。 結果は3篇の論文に既に出版され、日本数会でも発表され、大きな2つの国際会議でも報告されている。 ゼロ除算の詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku

また、再生核研究所声明の中でもいろいろ解説している。


以 上

Impact of ‘Division by Zero’ in Einstein’s Static Universe and Newton’s Equations in Classical Mechanics. Ajay Sharma physicsajay@yahoo.com Community Science Centre. Post Box 107 Directorate of Education Shimla 171001 India

Key Words Aristotle, Universe, Einstein, Newton http://gsjournal.net/Science-Journals/Research%20Papers-Relativity%20Theory/Download/2084

再生核研究所声明 279(2016.01.28) ゼロ除算の意義

ここでは、ゼロ除算発見2周年目が近づいた現時点における ゼロ除算100/0=0, 0/0=0の意義を箇条書きで纏めて置こう。

1)。西暦628年インドでゼロが記録されて以来 ゼロで割るという問題 に 簡明で、決定的な解決をもたらした。数学として完全な扱いができたばかりか、結果が世の普遍的な現象を表現していることが実証された。それらは3篇の論文に公刊され、第4論文も出版が決まり、さらに4篇の論文原稿があり、討論されている。2つの大きな国際会議で報告され、日本数学会でも2件発表され、ゼロ除算の解説(2015.1.14;14ページ)を1000部印刷配布、広く議論している。また, インターネット上でも公開で解説している:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku
2) ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立された。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていて、特殊相対性理論やブラックホールなどの扱いに重要な新しい視点を与える。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。次のような極めて重要な言葉に表されている:
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970
5)複素解析学では、1次分数変換の美しい性質が、ゼロ除算の導入によって、任意の1次分数変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な定理は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、ゼロ除算にいう、解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。

11)ゼロ除算が可能であるか否かの議論について:

現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかの未知の分野が望めて、大いに期待できる世界が拓かれる。

12)ゼロ除算は、数学ばかりではなく、人生観、世界観や文化に大きな影響を与える。
次を参照:

再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観 。

ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として受け入れることである。

13) ゼロ除算は ユークリッド幾何学にも基本的に現れ、いわば、素朴な無限遠点に関係するような平行線、円と直線の関係などで本質的に新しい現象が見つかり、現実の現象の説明に合致する局面が拓かれた。

14) 最近、3つのグループの研究に遭遇した:

論理、計算機科学 代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の検討(T. S. Reis and James A.D.W. Anderson)。

これらの理論は、いずれも不完全、人為的で我々が確定せしめたゼロ除算が、確定的な数学であると考えられる。世では、未だゼロ除算について不可思議な議論が続いているが、数学的には既に確定していると考えられる。

そこで、これらの認知を求め、ゼロ除算の研究の促進を求めたい:

再生核研究所声明 272(2016.01.05): ゼロ除算の研究の推進を、
再生核研究所声明259(2015.12.04): 数学の生態、旬の数学 ―ゼロ除算の勧め。

以 上


Impact of ‘Division by Zero’ in Einstein’s Static Universe and Newton’s Equations in Classical Mechanics. Ajay Sharma physicsajay@yahoo.com Community Science Centre. Post Box 107 Directorate of Education Shimla 171001 India

KeyWords Aristotle, Universe, Einstein, Newton http://gsjournal.net/Science-Journals/Research%20Papers-Relativity%20Theory/Download/2084











「買い物弱者」700万人 内閣府調べ、交通不便な地方で顕著 2016/1/30 13:30日本経済新聞 電子版

「買い物弱者」700万人 内閣府調べ、交通不便な地方で顕著 
2016/1/30 13:30日本経済新聞 電子版

高齢になり、日用品などの買い物に不便を感じる「買い物弱者」が増えている。内閣府の調査によると、高齢者の約17%が「買い物に不便を感じている」と回答した。60歳以上の高齢者数から買い物弱者を推計すると、その数は全国で約700万人に達する。自動車以外の移動手段に乏しい地方で特に目立っている。
買い物弱者の割合は、東京都区部をはじめとする大都市では14%。公共交通機関が充実。生協やネットスーパーなどの…http://www.nikkei.com/article/DGXLASFS08H6M_Q6A130C1MM0000/


再生核研究所声明192(2014.12.27) 無限遠点から観る、人生、世界

(これは、最近、夢中になっているゼロ除算の発想から湧いた、逆思考である。要するに遠い将来から、人生や世界をみたら、考えたら、どのようになるかという視点である。)

主張が明確に湧いたので、結論、趣旨から述べたい。人は我々の目標や希望が未来にあり、そのためにその目標に向かって、努力、精進などと志向しているは 多いのではないだろうか。そのような意味で、我々の関心が、先に、先に有るように感じるのではないだろうか。これは自然な心情であろうが、別の視点も考えたい。成長や発展、変化には適切な有り様が有って、早ければ良い、急いで進めれば良いとはならないということである。現在は、未来のためにあるのではなく、現在、現状はそれ自体尊いという視点である。先、先ではなく、 いま、いまが大事であるという視点である。生物の成長には固有のリズム、
成長のペースがあるということである。我々は、生物としての枠、構成されている状況によって制限があり、適切な有り様が存在する:

再生核研究所声明85(2012.4.24)食欲から人間を考える ― 飽きること

理想的な有り様には 自然な終末もあり、大局的にみれば、大きな流れにおける調和こそ
大事ではないだろうか。次の声明

再生核研究所声明144(3013.12.12) 人類滅亡の概念 - 進化とは 滅亡への過程である

の題名も真実だろうが、そこで述べた、

そこで、 ここでの教訓は、目標や先は、そんなに良くはないのだから、何事無理をするな、自分のペースで、急がず、慌てず、 自分の心の状態を尊重する ということである。人生の一つの原理は、ゲーテの 絶えず活動して止まないもの、 アインシュタインの 人生は自転車に乗っているようなもの である、 止まったら、倒れてしまう、 岡本太郎氏の 芸術は爆発だ、どんどん爆発を続けて行くのが芸術だ。 これらは、誠 至言である。

は真実としても、活動を進める情念も結局、自己のペースが大事であって、あまり外の影響を強く受けるべきではないと言う、視点が大事ではないだろうか。

言いたいことは、個人の心持ちもそうであるが、経済活動、社会活動、科学の進歩も、全体的な流れにおける調和が大事であるということである。例えば

磁気浮上式電車の開通の是非は 妥当であろうか。
原子力発電所の開発促進は適切であろうか。
グローバリゼーションは 急ぎ過ぎではないだろうか。
成果主義は行き過ぎではないだろうか。
経済の成長、発展 優先も大いに気になる。

などと難しい問題に対する広く、深い、総合的な評価の検討も要請したい。 次の声明も参照:

再生核研究所声明117(2013.5.10): 時,状況が問題; タイミングの重要性 、死の問題、恋の問題。

以 上

再生核研究所声明 143 (2013.12.10)  グローバリゼーションの危険性

(2013.12.6.3時45分 夢の中で新しい原理を 情景を交えながら発見し、目を覚ましました。グローバリゼーションの危険性と、人類滅亡の原理です。 声明の案にできそうです。適切か検討します。 ― その夢は 農村地帯で、1軒の農家の畑だけが緑の野菜で覆われ 他の周辺の広大な農地は 灰色になって広がり、異様であったが、一人の青年が、グローバリゼーションの影響で 他の農家がやって行けず、農家では お金が入らないと言っていました。人類滅亡の概念は 哲学的、根本的な大事な原理を述べているが、それは その後 夢、うつつに考察したものである。 成文化を試みたい。)

上記で いわゆる市場主義の原理で 事を進めれば、生業が成り立たなくなると言う、根本問題を提起している。 実例でも、例えば、 広々としたベトナムの農村では、田植えを 手で、一株ずつ人海戦術で植えているが、日本では、田植え機械で 夫婦二人で、どんどん田植えが行われている。稲刈り、収穫作業も同様の差がある。農作業の重労働を想い出し、胸を痛めたものであるが、アメリカの小麦の生産方式など考えれば、日本の農家の農作業など、ベトナムと日本の差以上であろう。それらが、市場主義、自由競争となると、ベトナムの農家も日本の農家も成り立たないのは、道理である。このような危惧は、至る所に現れ、世界混乱の主因になるだろう。長い間続いていた、文化、習慣、慣習、生活基盤の破壊である。― インドの痛ましい情景を時として、回想する。土を運ぶのに、土を籠に入れ 頭に載せて、沢山の女性が連なって運んでいる。普通考えられるトラックで運べば、如何に簡単に大量に運べるかを考えると、痛ましい仕事である。しかしながら、それらを機械化すれば、失業者の増大や、取り巻く環境の激変で大きな混乱が起きるだろう。
そこで、グローバリゼーションの危険性 を 夢の中の青年に代わって、世に訴え、注意を換気したい。
個々の存在してきた、事実、経過は大事であり、何事、新しい変化との調和に 思いを致さなければ、混乱の素になるだろう。何事変化に、早ければ良い、改めれば良い の考えには 根本的な問題が内在していて、危険であると考えたい。
グローバリゼーション は エントロピー増大の法則のように 避けられない面が有るだろう、そこで、絶えずブレーキをかけて行くような配慮、全体的な影響と調和を考える努力が必要ではないだろうか。

以 上 
追記、参考資料(ウィキペディア):
グローバリゼーション
グローバリゼーション(英: Globalization, Globalisation)は、社会的あるいは経済的な関連が、旧来の国家や地域などの境界を越えて、地球規模に拡大して様々な変化を引き起こす現象である。
概略[編集]
この語は、様々な社会的、文化的、経済的活動において用いられる。使われる文脈によって、例えば世界の異なる地域での産業を構成する要素間の関係が増えている事態(産業の地球規模化)など、世界の異なる部分間の緊密な繋がり(世界の地球規模化)を意味する場合もある。
世界史的に見れば、何らかの現象の「グローバリゼーション」は、大航海時代に起源を発する。大航海時代により、ヨーロッパ諸国が植民地を世界各地に作り始め、これによりヨーロッパの政治体制や経済体制の「グローバリゼーション」が始まり、物流の「グローバリゼーション」が起こった。これが本格化し始めた時期は19世紀で、ナポレオン戦争による国民国家の形成や、産業革命による資本主義の勃興が、近代の「グローバリゼーション」を引き起こした。
第二次世界大戦が終わると、アメリカ合衆国を筆頭に冷戦の西側諸国で多国籍企業が急成長し、現代の「グローバリゼーション」が始まった。1970年代から「グローバリゼーション」という語は使われるようになったが、より一層広まった時期は、アメリカ合衆国が湾岸戦争に勝利し、ソビエト連邦が崩壊したことにより、アメリカ合衆国の単独覇権が確立された1991年以後である。ソビエト連邦が崩壊すると、経済面では、「運輸と通信技術の爆発的な発展や、冷戦終結後の自由貿易圏の拡大によって、文化と経済の枠に囚われない貿易が促進する事態」も指すようになった。グローバリゼーションの負の現象、例えば工業や農業といった産業が世界規模での競争(メガコンペティション)や、多国籍企業による搾取の強化と、それに伴う国内産業の衰退とプレカリアートの世界的増大という事態を指す場合もある。そのため、最近では否定的な語として用いられる例も多くなった。
1991年以後、グローバリゼーションの負の現象を非難する人々は、主要国首脳会議の開催地などで反グローバリゼーションを訴えている。又、グローバリゼーションが多国籍企業を利して末端の労働者を害する現象「アメリカニゼーション」だと揶揄する人々も少なくない(グローバル資本主義)。
2010年代に入る前後からは、かつてコスト削減や利益を増やすために中国企業に積極的にノウハウを教えた日本の企業が、逆に中国企業に買収される動きも出ている[1]。
異義語[編集]
「グローバル」と「インターナショナル」、「グローバリゼーション」と「インターナショナリゼーション(国際化)」という語は、意味する範囲が異なる。「インターナショナリゼーション」は国家と国家の間で生じる現象であるのに対して、「グローバリゼーション」は地球規模で生じるものであり、国境の存在の有無という点で区別される。
具体的に言えば、世界地図を見て国境を意識しながら国家間の問題を考えれば、「インターナショナル」な問題を考えている事になる。対して、地球儀を見ながら地球全体の問題を考えれば「グローバル」な問題を考えている事になる。即ち、「グローバリゼーション」の方が「インターナショナリゼーション」よりも範囲は広くなる。
訳語[編集]
大学共同利用機関法人人間文化研究機構国立国語研究所の「外来語」言い換え提案では「地球規模化」を挙げている。グローバリゼーション、グローバル化といった言葉もよく使われる。中国語では、「全球化」と訳される。
徴候[編集]
グローバリゼーションの傾向が認められる現象は多くあるが、現代の「グローバリゼーション」では3つの流れがある。(1)第二次世界大戦後に地球規模化した現象、(2)世界恐慌最中の1930年代前半に失われたが、現在に復活している現象、(3)米ソ冷戦終結後の1990年代に地球規模化した現象:の3つである。これらの現象には、ヒト・モノ・カネと情報の国際的な流動化が含まれる。また科学技術、組織、法体系、インフラストラクチャーの発展がこの流動化を促すのに貢献した。一方で、様々な社会問題が国家の枠を超越し、一国では解決できなくなりつつある。
より明確にいうと、地球規模化が認められるものには:
• 世界経済の融合と連携深化。
• 貿易の発展。
• 直接投資を含む資本の国際的流動の増加。
• 国際金融システムの発展。
• 多国籍企業による世界経済の支配割合の高まり。
• 世界で最適な調達・販売を行なうサプライチェーン・マネジメントの発達。
• 航空と海運の航路増大による物流ネットワークの発達。
• インターネット、通信衛星、電話などの技術を使った国境を越えるデータの流れの増大。
• 地球規模的に適用される標準、基準などの増加。(例:著作権法)
• 異文化交流の機会増加。
• 増大する国際的な文化の交換。文化の同化、融合、欧米化、アメリカ化(アメリカナイゼーション)、日本化及び中華化を通じての文化差異の減少。
• 増加する海外旅行、観光。
• 不法入国者・不法滞在者を含んだ移住者の増加。
• 政治主体の一元化
• 世界貿易機関(WTO)などの組織への国際的取り決めを通じての国家支配権と国境(の重要さ)の衰退。
• 国民国家の枠組みにとらわれないNGOなどの組織拡大。
• WTO、WIPO、IMFなどの国際的組織の役割の増大。
• 経済的格差の世界化
• 世界的な富裕層の増大、発展途上国における中流階級の成長、先進国の中流階級の没落・貧困化
• 社会問題の世界化
• 疫病の世界的流行。
• 犯罪の世界規模化。
• 地球全体の環境問題。
• 紛争への世界的関与。
※上記のすべての項目に地球規模化が認められるかどうかについては議論の余地がある。
賛否[編集]
グローバリゼーションの進展については、賛同して推進しようとする意見もある一方で、批判も強く、様々な立場から撤廃しようとする意見[(反グローバリゼーション・脱グローバリゼーション)が提示されている。様々な分野においてその功罪につき議論されている。
国家経済的視点では、ジョセフ・E・スティグリッツは、グローバリゼーションの利点を認めつつも、現状の市場・制度の下では二極化が進む欠点の方が多いと述べる。 またポール・クルーグマンは主に覇権国家や多国籍企業の利益追求を肯定・促進する(新自由主義)ために広められるドグマの一種であると書いている[要出典]。ただしその著書『グローバル経済を動かす愚かな人々』からも分かるように、クルーグマンはグローバリゼーションそのものに反対しているわけではない。
以下でグローバリゼーションに対する賛成・反対双方の意見を載せる。ただしここに載せた意見が経済学的に正しいとされているものとは限らない。貿易#貿易に関する誤解も参照の事。
賛同[編集]
• 国際的分業(特化)が進展し、最適の国・場所において生産活動が行われるため、より効率的な、低コストでの生産が可能となり、物の価格が低下して社会が豊かになる。
• 投資活動においても、多くの選択肢から最も良いものを選択することができ、各企業・個人のニーズに応じた効率的な投資が可能となる。
• 全世界の様々な物資、人材、知識、技術が交換・流通されるため、科学や技術、文化などがより発展する可能性がある。また、各個人がそれを享受する可能性がある。
• 各個人がより幅広い自由(居住場所、労働場所、職種などの決定や観光旅行、映画鑑賞などの娯楽活動に至るまで)を得る可能性がある。
• 密接に各国が結びつくことによって、戦争が抑制される可能性がある。
• 環境問題や不況・貧困・金融危機などの大きな経済上の問題、人権問題などの解決には、国際的な取り組みが必要でありこれらに対する関心を高め、各国の協力、問題の解決を促す可能性がある。
反対[編集]
• 安い輸入品の増加や多国籍企業の進出などで競争が激化すると、競争に負けた国内産業は衰退し、労働者の賃金の低下や失業がもたらされる。
• 投機資金の短期間での流入・流出によって、為替市場や株式市場が混乱し、経済に悪影響を与える。
• 他国・他地域の企業の進出や、投資家による投資によって、国内・地域内で得られた利益が他地域・国外へと流出する。
• 従来は特定地域に留まっていたテロリズムや武力紛争が全世界化し、各地域の安全が脅かされる。
• 多国籍企業の進出や人的交流の活発化によって、生活と文化が世界規模で均質化し、地域固有の産業や文化が消滅する。
• 地域間競争の活発化によって、投資・経済活動の巨大都市(世界都市)への集中が進み、農山村や中小都市が切り捨てられ衰退する。
• 多国籍企業の影響力増大によって、各国の国家主権や地方自治が破壊される。
• 投資家やエリート官僚が政治を牛耳るようになり、各国・各地域の民主主義はグローバルな寡頭制に置き換えられる恐れがある。
• 厳しい競争の中で企業を誘致したり国内産業を育成しようとするため、労働環境は悪化し、環境基準が緩められ、社会福祉が切り捨てられるようになる(底辺への競争)。

再生核研究所声明 13 (2008/05/17): 第1原理 ― 最も大事なこと

世界の如何なるものも 環境内の存在であり、孤立した存在は在り得ない。世界の如何なる芸術も真理もまた一切の価値は、人類が存在して始めて意味のある存在となる。従って人類の生存は、如何なるものをも超えた存在であり、すべてに優先する第1原理として、認識する必要がある。よって環境や戦争については 多くの人間の関与すべき重要な問題と考えなければならない。21世紀は、近代科学の進歩によって 地球の有限性が顕わになり、人類絶滅の可能性を感じせしめるようになってきた時代とも言える。

国が栄えなければ、地方の栄えは考えられず、県などが栄えなければ 市町村などの発展は望めない。市町村などが健全でなければ 地域は栄えず、住民や家庭の健全な生活は不可能である。しかしながら、現実的な対応としては、逆方向の発展を考えざるを得ない。すなわち私たち個人、および個人の近くから、より良い社会、環境になるように努力していくことである。孤高の存在は所詮空しく、儚いものである。それゆえに われわれは各級のレベルにおける環境と社会に思いを致すことに努力して行こうではありませんか。

特に、われなき世界は 存在すれども、何事をも認識できず、知ることもなく感じる事もできない。よって、われ存在して始めて、世界を知ることになるから、健全なる個人の存在は、個人にとっては最も大事な第1原理に考えざるを得ない。これは言い古されてきた、 まず健康ということ、 に他ならない。われなき世界とは 自分が影響を与えない世界のことである。この個人と社会の関わりは、 愛とよばれている、 愛の本質である。それは男女の愛と親子の愛が基本になっている。それはまた じんかん と よばれる人間存在の本質でもある。

この声明は 地球環境を限りなく大事にし、世界の平和を確立し、社会を大事に思い、世界の拡大と深化を、 個人を尊重しながら、 積極的に進めることを、各級のレベルで努力することを要請しているものである。その原理は、 人間存在の本質である、 人間存在における三位一体の理存在、知、愛の、存在して、始めて知り、求める事ができる という原理を、いわば当たり前のことを、
確認しているに他ならない。(しかしながら、実際にはこの自明な、重要な原理は、解析接続のように必然的に 新しい価値観と考え方を限りなく発展させ、雄大な世界を拓くのであるが、私個人はこの古い世界で生涯を閉じようとしていて、その世界には立ち入らない事にしたいと思う。不思議にも 少年時代に宇宙論と共にその世界を覗いたのですが、怖くなって覗かないようにしました。それはガウスが非ユークリッド幾何学を発見したが、世の反響の大きさを恐れて発表を控えたのと同じ心境です。) 以上。