複素解析
Question book-4.svg
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。
出典を追加して記事の信頼性向上にご協力ください。(2011年12月)
複素関数f(z)=(z2-1)(z-2-i)2/(z2+2+2i)のグラフ。色相は偏角を表し、明度(このグラフでは周期的に変化させている)は絶対値を表す。
数学の分科である複素解析(ふくそかいせき、complex analysis)とは、複素数の関数に関わる微分学、積分学、変分学、微分方程式論、積分方程式論、関数論などの総称である。初等教育で扱う実関数の解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といっても複素解析を意味することが多い。複素解析の手法は応用数学を含む数学、理論物理学、工学などの多くの分野でもちいられている。
目次 [非表示]
1 複素関数
2 複素解析関数
2.1 特異点の分類
2.2 解析関数の分類
3 主な結果
4 他の分野への応用
5 歴史
6 関連項目
複素関数[編集]
複素関数とは自由変数と従属変数がともに複素数の範囲で与えられるようなものである。より正確に言えば複素平面の部分集合上で定義された複素数値の関数が複素関数とよばれる。複素関数に対し自由変数や従属変数を実部と虚部とにわけて考えることができる。
z = x + iy ,\, w = f(z) = u(z) + iv(z).\,
ここで x,y,u(z),v(z) \in \mathbb{R}.
従って複素関数の成分
u = u(x,y),~\,
v = v(x,y)\,
は2つの実変数 x, y についての実数値関数だと考えることができる。(学校教育などにおいて)複素解析の基本的な概念は、指数関数、対数関数、三角関数などの実関数を複素関数に拡張することにより与えられることが多い。
複素解析関数[編集]
複素解析関数とは、複素平面の開領域(平面全体でも可)で定義され、定義域の全体で解析的な複素関数をいう。複素関数については解析的(冪級数へ展開可能)であることと微分可能であることは同値であり、これを正則 (regular) であるという。複素関数が解析的でない点を特異点 (singularity) という。特異点における関数値は不定であったり正負の無限であったりすることが多いから、特異点は定義域の外にあると考える方が妥当であるが、当然に、定義域の外の点のうち、微分不可能な点を全て特異点というべきではない。特異点とは解析関数の定義域の閉包の開核に含まれる非解析的な点であると考えてもよい。ただし、究極的には、複素解析の対象となる関数が複素解析関数であり、複素解析の対象となる非解析的な点が特異点である。(何が複素解析の対象になるかについては主観の入る余地がある。)
特異点の分類[編集]
複素解析は解析的な領域を探求する分野であるが、複素関数に特異点(singularity)がある場合、特異点を含む領域全体に於ける大局的な挙動は特異点に支配される。従って、特異点の位置や性質を研究することは複素解析の範疇に含まれる。
特異点には孤立した特異点 (isolated -) と孤立していない特異点 (non-isolated -) とがあるが、複素解析の対象となるのは主に孤立した特異点である。孤立した特異点は、除去可能な特異点 (removable -)、有限次数の極 (pole)、真性特異点 (essential -) に分類される。除去可能な特異点とは、その点に適当な値を定義することにより、その近傍で解析的になるものをいう。極とは、f(z) の特異点 z = a であって、(z - a)nf(z) において除去可能な特異点となる自然数 n が存在するものをいう。真性特異点とは、除去可能でも極でもない孤立した特異点をいう。
孤立していない特異点とは、特異点が稠密に連なっているために、その近傍に必ず他の特異点を含んでしまう特異点をいう。例えば f(z)=1/\sin\left(\tfrac{1}{z}\right) は z = 0 に孤立していない特異点を持つ(z = ±1/nπ は0以外の、孤立していない真性特異点、ただしnは任意の自然数)。この他に、定義域の自然な境界(解析接続によって越えられない壁)や多価関数を一価関数として扱うために導入する分岐 (branch cut) も一種の特異点と考えられる。分岐の端点を分岐点 (branch point) というが、分岐が有るかぎり、分岐点は孤立した特異点になりえない。然し、分岐は何処に置いてもよいものであるから都合に合わせて分岐を動かせば、分岐点を恰も孤立した特異点であるかのように扱える。この発想はリーマン面に通ずる。分岐点は代数分岐点 (algebraic -) と対数分岐点 (logarithmic -) に分類されるが、代数特異点、対数特異点と呼ばれることもある。
解析関数の分類[編集]
複素関数が微分可能であるということは、実関数が微分可能であるということに比べて遥かに強い条件である。一階微分可能な複素関数は無限階微分可能であり、積分可能であり、解析的である。これらの事実により、複素関数が微分可能であれば正則であるという。定義域(若しくは考察の対象となっている領域)の全体で正則な関数を正則関数 (holomorphic function) といい、孤立する極を除いて正則な関数を有理型関数 (meromorphic function) という。複素平面全体を定義域とする正則関数を整関数 (entire function) という。(英語と日本語の不一致は同義語の取捨による。)
指数関数、正弦関数、余弦関数、多項式関数など、多くの初等関数は整関数であるが、正接関数などは極を持つから有理型であり、対数関数は負の実軸に分岐を持ち正則でない。ガンマ関数は負の整数に極を持つから有理型であるが、右半平面に限れば正則である。
主な結果[編集]
複素解析においてよくもちいられる道具立てに線積分がある。コーシーの積分定理によって、閉じた経路で囲まれた領域の内側全体で正則になっている関数を、その経路上線積分した値はかならず 0 になるということがわかる。もし正則関数が特定の点を極(特異点)にしているとき、つまりそこで関数の値が「爆発」し有限の値をとらないときには、その点での関数の留数を求めることで線積分の値を決定できる。各複素数における正則関数の値は、その点のまわりの円周上での(考えている正則関数に応じて構成される有理型関数の)線積分の値として求めることができる(コーシーの積分公式)。また、正則関数の線積分に関する留数の理論を用いることで複雑な実積分の値を決定することもできるようになる。
カゾラーティ・ワイエルシュトラスの定理によって真性特異点のまわりでの正則関数の挙動に関する驚くべき性質が導かれる。特異点のまわりでの関数の挙動はテイラー級数に類似のローラン級数によって記述される。
リウヴィルの定理によって複素平面全体で有界な正則関数は定数関数に限られることがわかるが、これをもちいて複素数体が代数的閉体であるという代数学の基本定理の自然で簡単な証明が与えられる。
正則関数の重要な性質に、正則な関数の連結な領域上全体での挙動が任意のより小さい領域上の挙動によって決定されてしまう(一致の原理)、というものがある。大きい領域全体でのもとの関数は小さい領域上に制限して考えたものの解析接続とよばれる。このような原理によってリーマンゼータ関数など、限られた領域上でしか収束しない級数によって定義されていた関数を複素平面全体に正則関数や有理型関数として拡張することが可能になる。場合によっては自然対数などのように複素平面内の単連結でない領域への解析接続が不可能なこともあるが、リーマン面とよばれる曲面を導入することでその上の正則関数としての「解析接続」を考えることができる。
上記の結果はすべて一変数に関する複素解析のものであるが、多次元の複素解析に関しても豊かな理論が存在し、ベキ級数展開などの解析的な性質が成立している。一方で共形性などの一変数正則関数が持つ幾何学的な性質は拡張されず、リーマンの写像定理が示すような複素平面の領域に関する共形関係性など一変数の理論における最も重要な結果が高次元においてはもはや成立しない。
他の分野への応用[編集]
伝統的に複素解析、特に等角写像の理論は工学・地図学に多くの応用があるが、解析的整数論全般にわたっても応用されている。近年は複素力学系の勃興や正則関数の繰り返しによって与えられるフラクタル図形(有名な例としてマンデルブロ集合が挙げられる)などによって有名になっている。ほかの重要な応用として共形変換に対して作用が不変な場の量子論である共形場理論が挙げられる。また、複素解析は電気工学におけるフェーザ表示、固体力学における応力関数、流体力学における複素速度ポテンシャルなど、工学全体を通じてさまざまな題材にも応用されている。
歴史[編集]
複素解析は古くからある数学の分野であり、その起源は19世紀あるいはより以前にまでたどることができる。レオンハルト・オイラー、カール・フリードリッヒ・ガウス、ベルンハルト・リーマン、オーギュスタン=ルイ・コーシー、ワイエルシュトラスや多くの二十世紀数学者たちが複素解析の理論に貢献している。https://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0%E8%A7%A3%E6%9E%90
再生核研究所声明290(2016.03.01) 神の隠し事、神の意地悪、人類の知能の程
オイラーの公式 e^{pi i}= -1 は最も基本的な数、-1, pi, i, eの4つの数の間の簡潔な関係を確立させているとして、数学とは何かを論じて、神秘的な公式として、その様を詳しく論じた(No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf Traduzir esta página
19/03/2012 -ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。)。
余りにも深い公式なので、神の人類に対する意地悪かと表現して、神は恥ずかしがり屋で、人類があまりに神に近づくのを嫌がっているのではないかと発想した。
ここ2年間、ゼロ除算を発見して、ゼロ除算の実在性は確信できたが、ゼロ除算の神秘的な歴史(再生核研究所声明287(2016.02.13)神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算)とともに、誠に神秘的な性質があるので その神秘性に触れたい。同時に これを未解決の問題として世に提起したい。
ゼロ除算はゼロで割ることを考えるであるが、アリストテレス以来問題とされ、ゼロの記録がインドで初めて628年になされているが、既にそのとき、正解1/0が期待されていたと言う。しかし、理論づけられず、その後1300年を超えて、不可能である、あるいは無限、無限大、無限遠点とされてきたものである。天才オイラーの無限であることの証明とその誤りを論じた論文があるが、アーベル、リーマンと継承されて現在に至る。他方極めて面白いのは、アリストテレス以来、ニュートン、アインシュタインで問題にされ、下記の貴重な言葉が残されている:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
現在、ゼロ除算の興味、関心は 相対性の理論との関係と、ゼロ除算が計算機障害を起すことから、論理の見直しと数体系の見直しの観点にある。さらに、数学界の難問、リーマン予想に関係していると言う。
ゼロ除算の神秘的な歴史は、早期の段階で ゼロ除算、割り算が乗法の逆で、不可能であるとの烙印を押され、確定的に、 数学的に定まった と 人は信じてしまったことにあると考えられる。さらに、それを天才達が一様に保証してきたことにある。誠に重い歴史である。
第2の要素も、極めて大事である。アリストテレス以来、連続性で世界を考える が世界を支配してきた基本的な考え方である。関数y=1/x の原点での値を考えるとき、正方向、あるいは 負方向からゼロに近づけば、正の無限や負の無限に近づくのをみて、ゼロ除算とは無限の何か、無限遠と考えるのは極めて自然で、誰もがそのように考えるだろう。
ところが、結果はゼロであるというのであるから、驚嘆して、多くの人は それは何だと顔さえしかめたものである。しばらく、話さえできない状況が国際的にも一部の友人たちの間でも1年を超えても続いた。 そこで、最近、次のような文書を公表した:
ゼロ除算についての謎 ― 神の意思は?:
ゼロ除算は数学的な真実で、我々の数学の基本的な結果です。ところが未だ、謎めいた現象があり、ゼロ除算の何か隠れた性質が有るように感じます。それはギリシャ、アリストテレスの世界観、世の連続性を否定し、強力な不連続性を表しています。強力な不連続性は普遍的に沢山あることが分かりましたが、肝心な次の等角写像での不連続性が分かりません:複素関数
W = z+ 1/z
は 単位円の外と内を [-2,+2] を除いた全複素平面上に一対一上へ等角に写します。単位円は[-2,+2]を往復するようにちょうど写ります。単位円が少しずれると飛行機の翼の断面のような形に写るので、航空力学での基本関数です。問題は、原点が所謂無限遠点に写っているということです。ところがゼロ除算では、無限遠点は空間の想像上の点としては考えられても、数値では存在せず、数値としては、その代わりに原点ゼロで、それで原点に写っていることになります。それで強力な不連続性を起こしている。
神が、そのように写像を定めたというのですが、何か上手い解釈が有るでしょうか?
神の意思が知りたい。
2016.2.27.16:46
既に 数学における強力な不連続性は 沢山発見され、新しい世界観として定着しつつあるが、一般の解析関数の孤立特異点での確定値がどのような意味があり、なぜそのような不連続性が存在するのかは、神の意思に関わることで、神秘的な問題ではないだろうか。 神秘の世界があることを指摘して置きたい。
以 上
再生核研究所声明287(2016.02.12) 神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算
(最近 相当 ゼロ除算について幅広く歴史、状況について調べている。)
ゼロ除算とは ゼロで割ることを考えることである。ゼロがインドで628年に記録され、現代数学の四則演算ができていたが、そのとき、既にゼロで割ることか考えられていた。しかしながら、その後1300年を超えてずっと我々の研究成果以外解決には至っていないと言える。実に面白いのは、628年の時に、ゼロ除算は正解と判断される結果1/0=0が期待されていたということである。さらに、詳しく歴史を調べているC.B. Boyer氏の視点では、ゼロ除算を最初に考えたのはアリストテレスであると判断され、アリストテレスは ゼロ除算は不可能であると判断していたという。― 真空で比を考えること、ゼロで割ることはできない。アリストテレスの世界観は 2000年を超えて現代にも及び、我々の得たゼロ除算はアリストテレスの 世界は連続である に反しているので受け入れられないと 複数の数学者が言明されたり、情感でゼロ除算は受け入れられないという人は結構多い。
数学界では,オイラーが積極的に1/0 は無限であるという論文を書き、その誤りを論じた論文がある。アーベルも記号として、それを無限と表し、リーマンもその流れで無限遠点の概念を持ち、リーマン球面を考えている。これらの思想は現代でも踏襲され、超古典アルフォースの複素解析の本にもしっかりと受け継がれている。現代数学の世界の常識である。これらが畏れ多い天才たちの足跡である。こうなると、ゼロ除算は数学的に確定し、何びとと雖も疑うことのない、数学的真実であると考えるのは至極当然である。― ゼロ除算はそのような重い歴史で、数学界では見捨てられていた問題であると言える。
しかしながら、現在に至るも ゼロ除算は広い世界で話題になっている。 まず、顕著な研究者たちの議論を紹介したい:
論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。
またフランスでも、奇怪な抽象的な世界を建設している人たちがいるが、個人レベルでもいろいろ奇怪な議論をしている人があとを立たない。また、数学界の難問リーマン予想に関係しているという。
直接議論を行っているところであるが、ゼロ除算で大きな広い話題は 特殊相対性理論、一般相対性理論の関係である。実際、物理とゼロ除算の関係はアリストテレス以来、ニュートン、アインシュタインの中心的な課題で、それはアインシュタインの次の意味深長な言葉で表現される:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
数学では不可能である、あるいは無限遠点と確定していた数学、それでも話題が尽きなかったゼロ除算、それが予想外の偶然性から、思いがけない結果、ゼロ除算は一般化された除算,分数の意味で、何時でも唯一つに定まり、解は何時でもゼロであるという、美しい結果が発見された。いろいろ具体的な例を上げて、我々の世界に直接関係する数学で、結果は確定的であるとして、世界の公認を要請している:
再生核研究所声明280(2016.01.29) ゼロ除算の公認、認知を求める
Announcement 282: The Division by Zero $z/0=0$ on the Second Birthday
詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku
以 上
何故ゼロ除算が不可能であったか理由
1 割り算を掛け算の逆と考えた事
2 極限で考えようとした事
3 教科書やあらゆる文献が、不可能であると書いてあるので、みんなそう思った。
Question book-4.svg
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。
出典を追加して記事の信頼性向上にご協力ください。(2011年12月)
複素関数f(z)=(z2-1)(z-2-i)2/(z2+2+2i)のグラフ。色相は偏角を表し、明度(このグラフでは周期的に変化させている)は絶対値を表す。
数学の分科である複素解析(ふくそかいせき、complex analysis)とは、複素数の関数に関わる微分学、積分学、変分学、微分方程式論、積分方程式論、関数論などの総称である。初等教育で扱う実関数の解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といっても複素解析を意味することが多い。複素解析の手法は応用数学を含む数学、理論物理学、工学などの多くの分野でもちいられている。
目次 [非表示]
1 複素関数
2 複素解析関数
2.1 特異点の分類
2.2 解析関数の分類
3 主な結果
4 他の分野への応用
5 歴史
6 関連項目
複素関数[編集]
複素関数とは自由変数と従属変数がともに複素数の範囲で与えられるようなものである。より正確に言えば複素平面の部分集合上で定義された複素数値の関数が複素関数とよばれる。複素関数に対し自由変数や従属変数を実部と虚部とにわけて考えることができる。
z = x + iy ,\, w = f(z) = u(z) + iv(z).\,
ここで x,y,u(z),v(z) \in \mathbb{R}.
従って複素関数の成分
u = u(x,y),~\,
v = v(x,y)\,
は2つの実変数 x, y についての実数値関数だと考えることができる。(学校教育などにおいて)複素解析の基本的な概念は、指数関数、対数関数、三角関数などの実関数を複素関数に拡張することにより与えられることが多い。
複素解析関数[編集]
複素解析関数とは、複素平面の開領域(平面全体でも可)で定義され、定義域の全体で解析的な複素関数をいう。複素関数については解析的(冪級数へ展開可能)であることと微分可能であることは同値であり、これを正則 (regular) であるという。複素関数が解析的でない点を特異点 (singularity) という。特異点における関数値は不定であったり正負の無限であったりすることが多いから、特異点は定義域の外にあると考える方が妥当であるが、当然に、定義域の外の点のうち、微分不可能な点を全て特異点というべきではない。特異点とは解析関数の定義域の閉包の開核に含まれる非解析的な点であると考えてもよい。ただし、究極的には、複素解析の対象となる関数が複素解析関数であり、複素解析の対象となる非解析的な点が特異点である。(何が複素解析の対象になるかについては主観の入る余地がある。)
特異点の分類[編集]
複素解析は解析的な領域を探求する分野であるが、複素関数に特異点(singularity)がある場合、特異点を含む領域全体に於ける大局的な挙動は特異点に支配される。従って、特異点の位置や性質を研究することは複素解析の範疇に含まれる。
特異点には孤立した特異点 (isolated -) と孤立していない特異点 (non-isolated -) とがあるが、複素解析の対象となるのは主に孤立した特異点である。孤立した特異点は、除去可能な特異点 (removable -)、有限次数の極 (pole)、真性特異点 (essential -) に分類される。除去可能な特異点とは、その点に適当な値を定義することにより、その近傍で解析的になるものをいう。極とは、f(z) の特異点 z = a であって、(z - a)nf(z) において除去可能な特異点となる自然数 n が存在するものをいう。真性特異点とは、除去可能でも極でもない孤立した特異点をいう。
孤立していない特異点とは、特異点が稠密に連なっているために、その近傍に必ず他の特異点を含んでしまう特異点をいう。例えば f(z)=1/\sin\left(\tfrac{1}{z}\right) は z = 0 に孤立していない特異点を持つ(z = ±1/nπ は0以外の、孤立していない真性特異点、ただしnは任意の自然数)。この他に、定義域の自然な境界(解析接続によって越えられない壁)や多価関数を一価関数として扱うために導入する分岐 (branch cut) も一種の特異点と考えられる。分岐の端点を分岐点 (branch point) というが、分岐が有るかぎり、分岐点は孤立した特異点になりえない。然し、分岐は何処に置いてもよいものであるから都合に合わせて分岐を動かせば、分岐点を恰も孤立した特異点であるかのように扱える。この発想はリーマン面に通ずる。分岐点は代数分岐点 (algebraic -) と対数分岐点 (logarithmic -) に分類されるが、代数特異点、対数特異点と呼ばれることもある。
解析関数の分類[編集]
複素関数が微分可能であるということは、実関数が微分可能であるということに比べて遥かに強い条件である。一階微分可能な複素関数は無限階微分可能であり、積分可能であり、解析的である。これらの事実により、複素関数が微分可能であれば正則であるという。定義域(若しくは考察の対象となっている領域)の全体で正則な関数を正則関数 (holomorphic function) といい、孤立する極を除いて正則な関数を有理型関数 (meromorphic function) という。複素平面全体を定義域とする正則関数を整関数 (entire function) という。(英語と日本語の不一致は同義語の取捨による。)
指数関数、正弦関数、余弦関数、多項式関数など、多くの初等関数は整関数であるが、正接関数などは極を持つから有理型であり、対数関数は負の実軸に分岐を持ち正則でない。ガンマ関数は負の整数に極を持つから有理型であるが、右半平面に限れば正則である。
主な結果[編集]
複素解析においてよくもちいられる道具立てに線積分がある。コーシーの積分定理によって、閉じた経路で囲まれた領域の内側全体で正則になっている関数を、その経路上線積分した値はかならず 0 になるということがわかる。もし正則関数が特定の点を極(特異点)にしているとき、つまりそこで関数の値が「爆発」し有限の値をとらないときには、その点での関数の留数を求めることで線積分の値を決定できる。各複素数における正則関数の値は、その点のまわりの円周上での(考えている正則関数に応じて構成される有理型関数の)線積分の値として求めることができる(コーシーの積分公式)。また、正則関数の線積分に関する留数の理論を用いることで複雑な実積分の値を決定することもできるようになる。
カゾラーティ・ワイエルシュトラスの定理によって真性特異点のまわりでの正則関数の挙動に関する驚くべき性質が導かれる。特異点のまわりでの関数の挙動はテイラー級数に類似のローラン級数によって記述される。
リウヴィルの定理によって複素平面全体で有界な正則関数は定数関数に限られることがわかるが、これをもちいて複素数体が代数的閉体であるという代数学の基本定理の自然で簡単な証明が与えられる。
正則関数の重要な性質に、正則な関数の連結な領域上全体での挙動が任意のより小さい領域上の挙動によって決定されてしまう(一致の原理)、というものがある。大きい領域全体でのもとの関数は小さい領域上に制限して考えたものの解析接続とよばれる。このような原理によってリーマンゼータ関数など、限られた領域上でしか収束しない級数によって定義されていた関数を複素平面全体に正則関数や有理型関数として拡張することが可能になる。場合によっては自然対数などのように複素平面内の単連結でない領域への解析接続が不可能なこともあるが、リーマン面とよばれる曲面を導入することでその上の正則関数としての「解析接続」を考えることができる。
上記の結果はすべて一変数に関する複素解析のものであるが、多次元の複素解析に関しても豊かな理論が存在し、ベキ級数展開などの解析的な性質が成立している。一方で共形性などの一変数正則関数が持つ幾何学的な性質は拡張されず、リーマンの写像定理が示すような複素平面の領域に関する共形関係性など一変数の理論における最も重要な結果が高次元においてはもはや成立しない。
他の分野への応用[編集]
伝統的に複素解析、特に等角写像の理論は工学・地図学に多くの応用があるが、解析的整数論全般にわたっても応用されている。近年は複素力学系の勃興や正則関数の繰り返しによって与えられるフラクタル図形(有名な例としてマンデルブロ集合が挙げられる)などによって有名になっている。ほかの重要な応用として共形変換に対して作用が不変な場の量子論である共形場理論が挙げられる。また、複素解析は電気工学におけるフェーザ表示、固体力学における応力関数、流体力学における複素速度ポテンシャルなど、工学全体を通じてさまざまな題材にも応用されている。
歴史[編集]
複素解析は古くからある数学の分野であり、その起源は19世紀あるいはより以前にまでたどることができる。レオンハルト・オイラー、カール・フリードリッヒ・ガウス、ベルンハルト・リーマン、オーギュスタン=ルイ・コーシー、ワイエルシュトラスや多くの二十世紀数学者たちが複素解析の理論に貢献している。https://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0%E8%A7%A3%E6%9E%90
再生核研究所声明290(2016.03.01) 神の隠し事、神の意地悪、人類の知能の程
オイラーの公式 e^{pi i}= -1 は最も基本的な数、-1, pi, i, eの4つの数の間の簡潔な関係を確立させているとして、数学とは何かを論じて、神秘的な公式として、その様を詳しく論じた(No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf Traduzir esta página
19/03/2012 -ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。)。
余りにも深い公式なので、神の人類に対する意地悪かと表現して、神は恥ずかしがり屋で、人類があまりに神に近づくのを嫌がっているのではないかと発想した。
ここ2年間、ゼロ除算を発見して、ゼロ除算の実在性は確信できたが、ゼロ除算の神秘的な歴史(再生核研究所声明287(2016.02.13)神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算)とともに、誠に神秘的な性質があるので その神秘性に触れたい。同時に これを未解決の問題として世に提起したい。
ゼロ除算はゼロで割ることを考えるであるが、アリストテレス以来問題とされ、ゼロの記録がインドで初めて628年になされているが、既にそのとき、正解1/0が期待されていたと言う。しかし、理論づけられず、その後1300年を超えて、不可能である、あるいは無限、無限大、無限遠点とされてきたものである。天才オイラーの無限であることの証明とその誤りを論じた論文があるが、アーベル、リーマンと継承されて現在に至る。他方極めて面白いのは、アリストテレス以来、ニュートン、アインシュタインで問題にされ、下記の貴重な言葉が残されている:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
現在、ゼロ除算の興味、関心は 相対性の理論との関係と、ゼロ除算が計算機障害を起すことから、論理の見直しと数体系の見直しの観点にある。さらに、数学界の難問、リーマン予想に関係していると言う。
ゼロ除算の神秘的な歴史は、早期の段階で ゼロ除算、割り算が乗法の逆で、不可能であるとの烙印を押され、確定的に、 数学的に定まった と 人は信じてしまったことにあると考えられる。さらに、それを天才達が一様に保証してきたことにある。誠に重い歴史である。
第2の要素も、極めて大事である。アリストテレス以来、連続性で世界を考える が世界を支配してきた基本的な考え方である。関数y=1/x の原点での値を考えるとき、正方向、あるいは 負方向からゼロに近づけば、正の無限や負の無限に近づくのをみて、ゼロ除算とは無限の何か、無限遠と考えるのは極めて自然で、誰もがそのように考えるだろう。
ところが、結果はゼロであるというのであるから、驚嘆して、多くの人は それは何だと顔さえしかめたものである。しばらく、話さえできない状況が国際的にも一部の友人たちの間でも1年を超えても続いた。 そこで、最近、次のような文書を公表した:
ゼロ除算についての謎 ― 神の意思は?:
ゼロ除算は数学的な真実で、我々の数学の基本的な結果です。ところが未だ、謎めいた現象があり、ゼロ除算の何か隠れた性質が有るように感じます。それはギリシャ、アリストテレスの世界観、世の連続性を否定し、強力な不連続性を表しています。強力な不連続性は普遍的に沢山あることが分かりましたが、肝心な次の等角写像での不連続性が分かりません:複素関数
W = z+ 1/z
は 単位円の外と内を [-2,+2] を除いた全複素平面上に一対一上へ等角に写します。単位円は[-2,+2]を往復するようにちょうど写ります。単位円が少しずれると飛行機の翼の断面のような形に写るので、航空力学での基本関数です。問題は、原点が所謂無限遠点に写っているということです。ところがゼロ除算では、無限遠点は空間の想像上の点としては考えられても、数値では存在せず、数値としては、その代わりに原点ゼロで、それで原点に写っていることになります。それで強力な不連続性を起こしている。
神が、そのように写像を定めたというのですが、何か上手い解釈が有るでしょうか?
神の意思が知りたい。
2016.2.27.16:46
既に 数学における強力な不連続性は 沢山発見され、新しい世界観として定着しつつあるが、一般の解析関数の孤立特異点での確定値がどのような意味があり、なぜそのような不連続性が存在するのかは、神の意思に関わることで、神秘的な問題ではないだろうか。 神秘の世界があることを指摘して置きたい。
以 上
再生核研究所声明287(2016.02.12) 神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算
(最近 相当 ゼロ除算について幅広く歴史、状況について調べている。)
ゼロ除算とは ゼロで割ることを考えることである。ゼロがインドで628年に記録され、現代数学の四則演算ができていたが、そのとき、既にゼロで割ることか考えられていた。しかしながら、その後1300年を超えてずっと我々の研究成果以外解決には至っていないと言える。実に面白いのは、628年の時に、ゼロ除算は正解と判断される結果1/0=0が期待されていたということである。さらに、詳しく歴史を調べているC.B. Boyer氏の視点では、ゼロ除算を最初に考えたのはアリストテレスであると判断され、アリストテレスは ゼロ除算は不可能であると判断していたという。― 真空で比を考えること、ゼロで割ることはできない。アリストテレスの世界観は 2000年を超えて現代にも及び、我々の得たゼロ除算はアリストテレスの 世界は連続である に反しているので受け入れられないと 複数の数学者が言明されたり、情感でゼロ除算は受け入れられないという人は結構多い。
数学界では,オイラーが積極的に1/0 は無限であるという論文を書き、その誤りを論じた論文がある。アーベルも記号として、それを無限と表し、リーマンもその流れで無限遠点の概念を持ち、リーマン球面を考えている。これらの思想は現代でも踏襲され、超古典アルフォースの複素解析の本にもしっかりと受け継がれている。現代数学の世界の常識である。これらが畏れ多い天才たちの足跡である。こうなると、ゼロ除算は数学的に確定し、何びとと雖も疑うことのない、数学的真実であると考えるのは至極当然である。― ゼロ除算はそのような重い歴史で、数学界では見捨てられていた問題であると言える。
しかしながら、現在に至るも ゼロ除算は広い世界で話題になっている。 まず、顕著な研究者たちの議論を紹介したい:
論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。
またフランスでも、奇怪な抽象的な世界を建設している人たちがいるが、個人レベルでもいろいろ奇怪な議論をしている人があとを立たない。また、数学界の難問リーマン予想に関係しているという。
直接議論を行っているところであるが、ゼロ除算で大きな広い話題は 特殊相対性理論、一般相対性理論の関係である。実際、物理とゼロ除算の関係はアリストテレス以来、ニュートン、アインシュタインの中心的な課題で、それはアインシュタインの次の意味深長な言葉で表現される:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
数学では不可能である、あるいは無限遠点と確定していた数学、それでも話題が尽きなかったゼロ除算、それが予想外の偶然性から、思いがけない結果、ゼロ除算は一般化された除算,分数の意味で、何時でも唯一つに定まり、解は何時でもゼロであるという、美しい結果が発見された。いろいろ具体的な例を上げて、我々の世界に直接関係する数学で、結果は確定的であるとして、世界の公認を要請している:
再生核研究所声明280(2016.01.29) ゼロ除算の公認、認知を求める
Announcement 282: The Division by Zero $z/0=0$ on the Second Birthday
詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku
以 上
何故ゼロ除算が不可能であったか理由
1 割り算を掛け算の逆と考えた事
2 極限で考えようとした事
3 教科書やあらゆる文献が、不可能であると書いてあるので、みんなそう思った。
AD
0 件のコメント:
コメントを投稿