数学者が新論文、最初の10億個の素数のうち末尾が9で終わるものはそうでないものよりも多い
Posted 5 days ago, by Chloe Williams
Stanford Universityの2名の数学者が発表した論文により、最初の10億個の素数は、末尾が9で終わるものが、そうでないものに対して著しく多いというこれまでの考え方では説明し難い偏移が生じていることが判った。
この論文を発表したのはRobert J. Lemke Oliver, Kannan Soundararajanの数学者で、これまで素数が有しているこの特徴に気づいた数学者はおらず、これまでの数学の考え方では説明し難いこの論文内容は、多数の数学者に驚きをもって迎え入れられている。
これまでの数学の考え方では、素数は(少なくとも最初の10億個という膨大な数)ランダムなものと考える向きが強かっただけに、素数にはランダムを超えた特有のパターンを有しているという今回の論文成果は、ランダムという概念そのものを根底から覆す、数学の新しい概念を提示するものともなっている。
Source: arxiv.org/abs/1603.03720
Chloe Williams is contributing writer of the Business Newsline. Send your comment to the authorhttp://www.businessnewsline.com/news/201603141537310000.html
再生核研究所声明290(2016.03.01) 神の隠し事、神の意地悪、人類の知能の程
オイラーの公式 e^{pi i}= -1 は最も基本的な数、-1, pi, i, eの4つの数の間の簡潔な関係を確立させているとして、数学とは何かを論じて、神秘的な公式として、その様を詳しく論じた(No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf Traduzir esta página
19/03/2012 -ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。)。
余りにも深い公式なので、神の人類に対する意地悪かと表現して、神は恥ずかしがり屋で、人類があまりに神に近づくのを嫌がっているのではないかと発想した。
ここ2年間、ゼロ除算を発見して、ゼロ除算の実在性は確信できたが、ゼロ除算の神秘的な歴史(再生核研究所声明287(2016.02.13)神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算)とともに、誠に神秘的な性質があるので その神秘性に触れたい。同時に これを未解決の問題として世に提起したい。
ゼロ除算はゼロで割ることを考えるであるが、アリストテレス以来問題とされ、ゼロの記録がインドで初めて628年になされているが、既にそのとき、正解1/0が期待されていたと言う。しかし、理論づけられず、その後1300年を超えて、不可能である、あるいは無限、無限大、無限遠点とされてきたものである。天才オイラーの無限であることの証明とその誤りを論じた論文があるが、アーベル、リーマンと継承されて現在に至る。他方極めて面白いのは、アリストテレス以来、ニュートン、アインシュタインで問題にされ、下記の貴重な言葉が残されている:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
現在、ゼロ除算の興味、関心は 相対性の理論との関係と、ゼロ除算が計算機障害を起すことから、論理の見直しと数体系の見直しの観点にある。さらに、数学界の難問、リーマン予想に関係していると言う。
ゼロ除算の神秘的な歴史は、早期の段階で ゼロ除算、割り算が乗法の逆で、不可能であるとの烙印を押され、確定的に、 数学的に定まった と 人は信じてしまったことにあると考えられる。さらに、それを天才達が一様に保証してきたことにある。誠に重い歴史である。
第2の要素も、極めて大事である。アリストテレス以来、連続性で世界を考える が世界を支配してきた基本的な考え方である。関数y=1/x の原点での値を考えるとき、正方向、あるいは 負方向からゼロに近づけば、正の無限や負の無限に近づくのをみて、ゼロ除算とは無限の何か、無限遠と考えるのは極めて自然で、誰もがそのように考えるだろう。
ところが、結果はゼロであるというのであるから、驚嘆して、多くの人は それは何だと顔さえしかめたものである。しばらく、話さえできない状況が国際的にも一部の友人たちの間でも1年を超えても続いた。 そこで、最近、次のような文書を公表した:
ゼロ除算についての謎 ― 神の意思は?:
ゼロ除算は数学的な真実で、我々の数学の基本的な結果です。ところが未だ、謎めいた現象があり、ゼロ除算の何か隠れた性質が有るように感じます。それはギリシャ、アリストテレスの世界観、世の連続性を否定し、強力な不連続性を表しています。強力な不連続性は普遍的に沢山あることが分かりましたが、肝心な次の等角写像での不連続性が分かりません:複素関数
W = z+ 1/z
は 単位円の外と内を [-2,+2] を除いた全複素平面上に一対一上へ等角に写します。単位円は[-2,+2]を往復するようにちょうど写ります。単位円が少しずれると飛行機の翼の断面のような形に写るので、航空力学での基本関数です。問題は、原点が所謂無限遠点に写っているということです。ところがゼロ除算では、無限遠点は空間の想像上の点としては考えられても、数値では存在せず、数値としては、その代わりに原点ゼロで、それで原点に写っていることになります。それで強力な不連続性を起こしている。
神が、そのように写像を定めたというのですが、何か上手い解釈が有るでしょうか?
神の意思が知りたい。
2016.2.27.16:46
既に 数学における強力な不連続性は 沢山発見され、新しい世界観として定着しつつあるが、一般の解析関数の孤立特異点での確定値がどのような意味があり、なぜそのような不連続性が存在するのかは、神の意思に関わることで、神秘的な問題ではないだろうか。 神秘の世界があることを指摘して置きたい。
以 上
再生核研究所声明287(2016.02.12)
神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算
(最近 相当 ゼロ除算について幅広く歴史、状況について調べている。)
ゼロ除算とは ゼロで割ることを考えることである。ゼロがインドで628年に記録され、現代数学の四則演算ができていたが、そのとき、既にゼロで割ることか考えられていた。しかしながら、その後1300年を超えてずっと我々の研究成果以外解決には至っていないと言える。実に面白いのは、628年の時に、ゼロ除算は正解と判断される結果1/0=0が期待されていたということである。さらに、詳しく歴史を調べているC.B. Boyer氏の視点では、ゼロ除算を最初に考えたのはアリストテレスであると判断され、アリストテレスは ゼロ除算は不可能であると判断していたという。― 真空で比を考えること、ゼロで割ることはできない。アリストテレスの世界観は 2000年を超えて現代にも及び、我々の得たゼロ除算はアリストテレスの 世界は連続である に反しているので受け入れられないと 複数の数学者が言明されたり、情感でゼロ除算は受け入れられないという人は結構多い。
数学界では,オイラーが積極的に1/0 は無限であるという論文を書き、その誤りを論じた論文がある。アーベルも記号として、それを無限と表し、リーマンもその流れで無限遠点の概念を持ち、リーマン球面を考えている。これらの思想は現代でも踏襲され、超古典アルフォースの複素解析の本にもしっかりと受け継がれている。現代数学の世界の常識である。これらが畏れ多い天才たちの足跡である。こうなると、ゼロ除算は数学的に確定し、何びとと雖も疑うことのない、数学的真実であると考えるのは至極当然である。― ゼロ除算はそのような重い歴史で、数学界では見捨てられていた問題であると言える。
しかしながら、現在に至るも ゼロ除算は広い世界で話題になっている。 まず、顕著な研究者たちの議論を紹介したい:
論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。
またフランスでも、奇怪な抽象的な世界を建設している人たちがいるが、個人レベルでもいろいろ奇怪な議論をしている人があとを立たない。また、数学界の難問リーマン予想に関係しているという。
直接議論を行っているところであるが、ゼロ除算で大きな広い話題は 特殊相対性理論、一般相対性理論の関係である。実際、物理とゼロ除算の関係はアリストテレス以来、ニュートン、アインシュタインの中心的な課題で、それはアインシュタインの次の意味深長な言葉で表現される:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
数学では不可能である、あるいは無限遠点と確定していた数学、それでも話題が尽きなかったゼロ除算、それが予想外の偶然性から、思いがけない結果、ゼロ除算は一般化された除算,分数の意味で、何時でも唯一つに定まり、解は何時でもゼロであるという、美しい結果が発見された。いろいろ具体的な例を上げて、我々の世界に直接関係する数学で、結果は確定的であるとして、世界の公認を要請している:
再生核研究所声明280(2016.01.29) ゼロ除算の公認、認知を求める
Announcement 282: The Division by Zero $z/0=0$ on the Second Birthday
詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku
以 上
何故ゼロ除算が不可能であったか理由
1 割り算を掛け算の逆と考えた事
2 極限で考えようとした事
3 教科書やあらゆる文献が、不可能であると書いてあるので、みんなそう思った。
再生核研究所声明198(2015.1.14) 計算機と人間の違い、そしてそれらの愚かさについて
まず、簡単な例として、割り算、除算の考えを振り返ろう:
声明は一般向きであるから、本質を分かり易く説明しよう。 そのため、ゼロ以上の数の世界で考え、まず、100/2を次のように考えよう:
100-2-2-2-,...,-2.
ここで、2 を何回引けるか(除けるか)と考え、いまは 50 回引いてゼロになるから分数の商は50である。
次に 3/2 を考えよう。まず、
3 - 2 = 1
で、余り1である。そこで、余り1を10倍して、 同様に
10-2-2-2-2-2=0
であるから、10/2=5 となり
3/2 =1+0.5= 1.5
とする。3を2つに分ければ、1.5である。
これは筆算で割り算を行うことを 減法の繰り返しで考える方法を示している。
ところで、 除算を引き算の繰り返しで計算する方法は、除算の有効な計算法がなかったので、実際は日本ばかりではなく、中世ヨーロッパでも計算は引き算の繰り返しで計算していたばかりか、現在でも計算機で計算する方法になっていると言う(吉田洋一;零の発見、岩波新書、34-43)。
計算機は、上記のように 割り算を引き算の繰り返しで、計算して、何回引けるかで商を計算すると言う。 計算機には、予想や感情、勘が働かないから、機械的に行う必要があり、このような手順、アルゴリズムが必要であると考えられる。 これは計算機の本質的な原理ではないだろうか。
そこで、人間は、ここでどのように行うであろうか。 100/2 の場合は、2掛ける何とかで100に近いものでと考え 大抵50は簡単に求まるのでは? 3/2も 3の半分で1.5くらいは直ぐに出るが、 2掛ける1で2、 余り1で、 次は10割る2で 5そこで、1.5と直ぐに求まるのではないだろうか。
人間は筆算で割り算を行うとき、上記で何回引けるかとは 発想せず、何回を掛け算で、感覚的に何倍入っているか、何倍引けるか、と考えるだろう。この人間の発想は教育によるものか、割り算に対して、逆演算の掛け算の学習効果を活かすように 相当にひとりでに学習するのかは極めて面白い点ではないだろうか。この発想には掛け算についての相当な経験と勘を有していなければ、有効ではない。
この簡単な計算の方法の中に、人間の考え方と計算機の扱いの本質的な違いが現れていると考える。 人間の方法には、逆の考え、すなわち積の考えや、勘、経験、感情が働いて、作業を進める点である。 計算機には柔軟な対応はできず、機械的にアルゴリズムを実行する他はない。 しかしながら、 計算機が使われた、あるいは用意された情報などを蓄積して、どんどんその意味における経験を豊かにして、求める作業を効率化しているのは 広く見られる。 その進め方は、対象、問題によっていろいろなアルゴリズムで 具体的には 複雑であるが、しかし、自動的に確定するように、機械的に定まるようになっていると考えられる ― 厳密に言うと そうではない考えもできる、すなわち、ランダムないわゆる 乱数を用いるアルゴリズムなどはそうとは言えない面もある ― グーグル検索など時間と共に変化しているが、自動的に進むシステムが構築されていると考えられる。 それで、蓄積される情報量が人間の器、能力を超えて、計算機は 人間を遥かに超え、凌ぐデータを扱うことが可能である事から、そのような学習能力は、人間のある能力を凌ぐ可能性が高まって来ている。 将棋や碁などで プロの棋士を凌ぐほどになっているのは、良い例ではないだろうか。もちろん、この観点からも、いろいろな状況に対応するアルゴリズムの開発は、計算機の進化において 大きな人類の課題になるだろう。
他方、例えば、幼児の言葉の学習過程は 神秘的とも言えるもので、個々の単語やその意味を1つずつ学習するよりは 全体的に感覚的に自動的にさえ学習しているようで、学習効果が生命の活動のように柔軟に総合的に進むのが 人間の才能の特徴ではないだろうか。
さらに、いくら情報やデータを集めても、 人間が持っている創造性は 計算機には無理のように見える。 創造性や新しい考えは 無意識から突然湧いてくる場合が多く、 創造性は計算機には無理ではないだろうか。 そのことを意識したわけではないが、人間の尊厳さを 創造性に 纏めている:
再生核研究所声明181(2014.11.25) 人類の素晴らしさ ― 7つの視点
そこでも触れているが、信仰や芸術、感情などは生命に結び付く高度な存在で、科学も計算機もいまだ立ち入ることができない世界として、生命に対する尊厳さを確認したい。
しかしながら、他方、人間の驚くべき 愚かさにも自戒して置きたい:
発想の転換、考え方の変更が難しいということである。発想の転換が 天動説を地動説に変えるのが難しかった世界史の事件のように、また、非ユークリッド幾何学を受け入れるのが大変だったように、実は極めて難しい状況がある。人間が如何に予断と偏見に満ち、思い込んだら変えられない性(さが) が深いことを 絶えず心しておく必要がある: 例えば、ゼロ除算は 千年以上も、不可能であるという烙印のもとで、世界史上でも人類は囚われていたことを述べていると考えられる。世界史の盲点であったと言えるのではないだろうか。 ある時代からの 未来人は 人類が 愚かな争いを続けていた事と同じように、人類の愚かさの象徴 と記録するだろう。 数学では、加、減、そして、積は 何時でも自由にできた、しかしながら、ゼロで割れないという、例外が除法には存在したが、ゼロ除算の簡潔な導入によって、例外なく除算もできるという、例外のない美しい世界が実現できた(再生核研究所声明180(2014.11.24) 人類の愚かさ― 7つの視点)。そこで、この弱点を克服する心得を次のように纏めている:
再生核研究所声明191(2014.12.26) 公理系、基本と人間
以 上
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
AD
0 件のコメント:
コメントを投稿