最強の必殺技をもつ科学者は誰? ニュートン、アインシュタイン、ホーキング…最も偉大な科学者を決めるマッドゲームが激アツ!
tocana3月24日(木)8時45分
画像は、「Wikipedia」より引用
ニュートン、アインシュタイン、ホーキング博士、今まで様々な科学者たちが非常に優れた功績を残してきたが、そのナンバー1を決めてしまおうとブラジルのカルチャー誌「Super Interessante」が立ち上がった。同誌はなんと懐かしのピクセルアートで作成された8人のキャラクターを参戦させ、ストリートファイター系の2D格闘ゲームを開発中だというのだ。各キャラクターの技もそれぞれの功績にちなんだもので、ニュートンVSキュリー夫人といった夢のようなタッグも実現する。
ゲーム自体は3月末にネット上で公開予定だそうだが、先立って各キャラクターのモーションが発表された。これが何ともイカしていて早くプレイしたくなること間違いなしのできなのだ。
【その他の画像はコチラ→http://tocana.jp/2016/03/post_9164.html】
■伝説の科学者達が繰り広げる死闘に胸熱
ゲーム「Science Kombat」は90年代の格闘ゲームを彷彿とさせる2Dタイプで、ダーウィン、ニュートン、ピタゴラス、アインシュタイン、キュリー夫人、ニコラ・テスラ、ホーキング博士とそうそうたるメンバーに加え、まだその実体が明かされていないラスボス「Divinity(神)」と、合計8名のキャラクターが登場する。
90年代は1991年にアーケードで発表された「ストリートファイターII(ストII)」が爆発的なヒットを生み、93年には当時としては珍しかった3DCG格闘ゲームの開祖「バーチャファイター」がSEGAよりリリースされ、まさに格闘ゲームの幕開けの時代だった。あのカクカクポリゴンに胸を熱くした人も多いのではないだろうか。
科学者たちをゲームのキャラクターにするというのは今までありそうでなかった発想だ。しかし実際にそのモーションを見るとゲームキャラとして相当マッチしている。もともと個性的なメンツだから当然なのかもしれないが、今回はその企画力に賞賛の拍手を贈りたい。現時点において各キャラクターは6種類の基本技と2タイプの必殺技を使えるという。リリース時には超必殺技や特殊攻撃なども追加されているかもしれない!
■ダーウィン
生物の進化論を唱えたダーウィンは、全体的にバランスのとれたキャラ設定のようだ。基本技は上段、下段からの浮かせ技への連携。これだけでも強力な感じだ。必殺技は上空からの技を追撃する昇竜拳のような「自然選択説」と、ダーウィンの真骨頂である「進化論」。基本技から「進化論」のコンボでフィニッシュしたら爽快だ。
■ニュートン
微積分から光学、万有引力など相対性理論前の物理学をニュートン物理と称するほど様々な発見やひらめきを残したニュートン。ゲームの中ではやや使いこなすのが難しそうな上級者向けのキャラに仕上がっているようだ。望遠鏡を使っての物理攻撃はややスキがありそうでガードされたら反撃必須か。
「グラビティ」はリンゴが落ちてくるという地味~な技だし、そもそもニュートン自身が木を揺らして落としているようにしか見えないため、あまり重力とは関係なさそうな……。とはいえ必殺技というのだから、当たると爆発でもするのだろうか。
■ピタゴラス
ピタゴラスの定理などで知られる、古代ギリシア時代の数学者で哲学者だけあって貫禄充分。技のほうはどことなく少林寺拳法が入っているような感じだがどうだろう。
ピタゴラスの定理は相手を翻弄しつつ、決まれば一発逆転というところか。「喰らえ、ピタゴラスの定理ぃぃぃいいいいい!」みたいな効果音が入ったらかっこ良すぎてちびってしまいそう。全キャラボイス入りだったら最高だろう。ちなみに必殺技「テトラクテュス~自然との調和~」を喰らった時のエフェクトもあつい。
■アインシュタイン
言わずと知れた20世紀の天才アインシュタイン。基本技も結構かっこいい。こんな俊敏な方だったのだろうか。必殺技は相対性理論を代表する数式「E=mc2(cの2乗)」、この何かを拾っているモーションは謎だがビーム攻撃はリーチも長く発動も早いのでかなりの脅威だ。初心者相手ならこれだけでも倒せそうだ。
もう一方の必殺技「相対性」は光速の攻撃なのだろうか。ちょっと練習するだけでなかなかの強キャラになりそうなポテンシャルを秘めていそうだ。
■キュリー夫人
放射能を発見し、二度ノーベル賞を受賞したキュリー夫人。基本技の時点ですでに必殺技のような派手なエフェクト。威力も高そうだ。しかし彼女が発見した放射元素にちなんだ必殺技、「ラジウム」「ポロニウム」はストリートファイターの波動拳と昇竜拳にしか見えないのは筆者だけであろうか。
キュリー夫人の実験ノートはいまだにかなりの放射線が放出されているという。もしかしたら触れただけでダメージを受けそうな感じもする。
■ニコラ・テスラ
19世紀中期から20世紀にかけて電気技師。交流電流、なかでもテスラコイルに代表されるように時代が早過ぎたものが多くあり、マッドサイエンティストの代名詞ともいえるテスラであるが、本ゲームにおいてもその不気味さは健在だ。体中に電気をまとって攻撃する基本技は本作一のかっこよさではなかろうか。
必殺技「テレフォース」はフェイント技なのだろうか。他のキャラより分が有るような感じだが正式版がリリースされるまでにゲームバランスは調整されているだろう。
■ホーキング博士
今でも宇宙物理界の第一人者である車椅子の物理博士ホーキング。完全に上級者向けという感じだ。いってみればストⅡのベガといったところであろうか。それにしてもホーキング博士の必殺技は瞬間移動技「ワームホール」に「ブラックホール」、と半端ないスケールで、使いこなすのは簡単ではなさそうだ。
今月末にはプレイできるみたいなので、それまでに頭の中でシュミレーションしておくといいかもしれない。ゲームシステムについてはまだ発表がないので定かではないが期待の作品だ。筆者としてもいち早くプレイしたいところだ。
(アナザー茂)
※画像は、「Wikipedia」より引用http://news.biglobe.ne.jp/trend/0324/toc_160324_5285867815.html
再生核研究所声明290(2016.03.01) 神の隠し事、神の意地悪、人類の知能の程
オイラーの公式 e^{pi i}= -1 は最も基本的な数、-1, pi, i, eの4つの数の間の簡潔な関係を確立させているとして、数学とは何かを論じて、神秘的な公式として、その様を詳しく論じた(No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf Traduzir esta página
19/03/2012 -ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。)。
余りにも深い公式なので、神の人類に対する意地悪かと表現して、神は恥ずかしがり屋で、人類があまりに神に近づくのを嫌がっているのではないかと発想した。
ここ2年間、ゼロ除算を発見して、ゼロ除算の実在性は確信できたが、ゼロ除算の神秘的な歴史(再生核研究所声明287(2016.02.13)神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算)とともに、誠に神秘的な性質があるので その神秘性に触れたい。同時に これを未解決の問題として世に提起したい。
ゼロ除算はゼロで割ることを考えるであるが、アリストテレス以来問題とされ、ゼロの記録がインドで初めて628年になされているが、既にそのとき、正解1/0が期待されていたと言う。しかし、理論づけられず、その後1300年を超えて、不可能である、あるいは無限、無限大、無限遠点とされてきたものである。天才オイラーの無限であることの証明とその誤りを論じた論文があるが、アーベル、リーマンと継承されて現在に至る。他方極めて面白いのは、アリストテレス以来、ニュートン、アインシュタインで問題にされ、下記の貴重な言葉が残されている:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
現在、ゼロ除算の興味、関心は 相対性の理論との関係と、ゼロ除算が計算機障害を起すことから、論理の見直しと数体系の見直しの観点にある。さらに、数学界の難問、リーマン予想に関係していると言う。
ゼロ除算の神秘的な歴史は、早期の段階で ゼロ除算、割り算が乗法の逆で、不可能であるとの烙印を押され、確定的に、 数学的に定まった と 人は信じてしまったことにあると考えられる。さらに、それを天才達が一様に保証してきたことにある。誠に重い歴史である。
第2の要素も、極めて大事である。アリストテレス以来、連続性で世界を考える が世界を支配してきた基本的な考え方である。関数y=1/x の原点での値を考えるとき、正方向、あるいは 負方向からゼロに近づけば、正の無限や負の無限に近づくのをみて、ゼロ除算とは無限の何か、無限遠と考えるのは極めて自然で、誰もがそのように考えるだろう。
ところが、結果はゼロであるというのであるから、驚嘆して、多くの人は それは何だと顔さえしかめたものである。しばらく、話さえできない状況が国際的にも一部の友人たちの間でも1年を超えても続いた。 そこで、最近、次のような文書を公表した:
ゼロ除算についての謎 ― 神の意思は?:
ゼロ除算は数学的な真実で、我々の数学の基本的な結果です。ところが未だ、謎めいた現象があり、ゼロ除算の何か隠れた性質が有るように感じます。それはギリシャ、アリストテレスの世界観、世の連続性を否定し、強力な不連続性を表しています。強力な不連続性は普遍的に沢山あることが分かりましたが、肝心な次の等角写像での不連続性が分かりません:複素関数
W = z+ 1/z
は 単位円の外と内を [-2,+2] を除いた全複素平面上に一対一上へ等角に写します。単位円は[-2,+2]を往復するようにちょうど写ります。単位円が少しずれると飛行機の翼の断面のような形に写るので、航空力学での基本関数です。問題は、原点が所謂無限遠点に写っているということです。ところがゼロ除算では、無限遠点は空間の想像上の点としては考えられても、数値では存在せず、数値としては、その代わりに原点ゼロで、それで原点に写っていることになります。それで強力な不連続性を起こしている。
神が、そのように写像を定めたというのですが、何か上手い解釈が有るでしょうか?
神の意思が知りたい。
2016.2.27.16:46
既に 数学における強力な不連続性は 沢山発見され、新しい世界観として定着しつつあるが、一般の解析関数の孤立特異点での確定値がどのような意味があり、なぜそのような不連続性が存在するのかは、神の意思に関わることで、神秘的な問題ではないだろうか。 神秘の世界があることを指摘して置きたい。
以 上
再生核研究所声明287(2016.02.12)
神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算
(最近 相当 ゼロ除算について幅広く歴史、状況について調べている。)
ゼロ除算とは ゼロで割ることを考えることである。ゼロがインドで628年に記録され、現代数学の四則演算ができていたが、そのとき、既にゼロで割ることか考えられていた。しかしながら、その後1300年を超えてずっと我々の研究成果以外解決には至っていないと言える。実に面白いのは、628年の時に、ゼロ除算は正解と判断される結果1/0=0が期待されていたということである。さらに、詳しく歴史を調べているC.B. Boyer氏の視点では、ゼロ除算を最初に考えたのはアリストテレスであると判断され、アリストテレスは ゼロ除算は不可能であると判断していたという。― 真空で比を考えること、ゼロで割ることはできない。アリストテレスの世界観は 2000年を超えて現代にも及び、我々の得たゼロ除算はアリストテレスの 世界は連続である に反しているので受け入れられないと 複数の数学者が言明されたり、情感でゼロ除算は受け入れられないという人は結構多い。
数学界では,オイラーが積極的に1/0 は無限であるという論文を書き、その誤りを論じた論文がある。アーベルも記号として、それを無限と表し、リーマンもその流れで無限遠点の概念を持ち、リーマン球面を考えている。これらの思想は現代でも踏襲され、超古典アルフォースの複素解析の本にもしっかりと受け継がれている。現代数学の世界の常識である。これらが畏れ多い天才たちの足跡である。こうなると、ゼロ除算は数学的に確定し、何びとと雖も疑うことのない、数学的真実であると考えるのは至極当然である。― ゼロ除算はそのような重い歴史で、数学界では見捨てられていた問題であると言える。
しかしながら、現在に至るも ゼロ除算は広い世界で話題になっている。 まず、顕著な研究者たちの議論を紹介したい:
論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。
またフランスでも、奇怪な抽象的な世界を建設している人たちがいるが、個人レベルでもいろいろ奇怪な議論をしている人があとを立たない。また、数学界の難問リーマン予想に関係しているという。
直接議論を行っているところであるが、ゼロ除算で大きな広い話題は 特殊相対性理論、一般相対性理論の関係である。実際、物理とゼロ除算の関係はアリストテレス以来、ニュートン、アインシュタインの中心的な課題で、それはアインシュタインの次の意味深長な言葉で表現される:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
数学では不可能である、あるいは無限遠点と確定していた数学、それでも話題が尽きなかったゼロ除算、それが予想外の偶然性から、思いがけない結果、ゼロ除算は一般化された除算,分数の意味で、何時でも唯一つに定まり、解は何時でもゼロであるという、美しい結果が発見された。いろいろ具体的な例を上げて、我々の世界に直接関係する数学で、結果は確定的であるとして、世界の公認を要請している:
再生核研究所声明280(2016.01.29) ゼロ除算の公認、認知を求める
Announcement 282: The Division by Zero $z/0=0$ on the Second Birthday
詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku
以 上
何故ゼロ除算が不可能であったか理由
1 割り算を掛け算の逆と考えた事
2 極限で考えようとした事
3 教科書やあらゆる文献が、不可能であると書いてあるので、みんなそう思った。
再生核研究所声明199(2015.1.15) 世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0
ゼロ除算は 西暦628年インドでゼロが文献に記録されて以来、問題とされてきた。ゼロ除算とは、ゼロで割ることを考えることである。これは数学の基本である、四則演算、加法、減法、乗法、除法において、除法以外は何時でも自由にできるのに、除法の場合だけ、ゼロで割ることができないという理由で、さらに物理法則を表す多くの公式にゼロ除算が自然に現れていることもあって、世界各地で、今でも絶えず、問題にされていると考えられる。― 小学生でも どうしてゼロで割れないのかと毎年、いろいろな教室で問われ続いているのではないだろうか.
これについては、近代数学が確立された以後でも、何百年を越えて 永い間の定説として、ゼロ除算は 不可能であり、ゼロで割ってはいけないことは、初等教育から、中等、高校、大学そして学術界、すなわち、世界の全ての文献と理解はそうなっている。変えることのできない不変的な法則のように理解されていると考えられる。
しかるに2014年2月2日 ゼロ除算は、可能であり、ゼロで割ればゼロであることが、偶然発見された。その後の経過、背景や意味付け等を纏めてきた:
再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)―
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について
ところが、気づいてみると、ゼロ除算は当たり前なのに、数学者たちが勝手に、割り算は掛け算の逆と思い込み、ゼロ除算は不可能であると 絶対的な真理であるかのように 烙印を押して、世界の人々も盲信してきた。それで、物理学者が そのために基本的な公式における曖昧さに困ってきた事情は ニュートンの万有引力の法則にさえ見られる。
さらに、誠に奇妙なことには、除算はその言葉が表すように、掛算とは無関係に考えられ、日本ばかりではなく西欧でも中世から除算は引き算の繰り返しで計算されてきた、古い、永い伝統がある。その考え方から、ゼロ除算は自明であると道脇裕氏と道脇愛羽さん6歳が(四則演算を学習して間もないときに)理解を示した ― ゼロ除算は除算の固有の意味から自明であり、ゼロで割ればゼロであるは数学的な真実であると言える(声明194)。数学、物理、文化への影響も甚大であると考えられる。
数学者は 数学の自由な精神で 好きなことで、考えられることは何でも考え、不可能を可能にし、分からないことを究め、真智を求めるのが 数学者の精神である。非ユークリッド幾何学の出現で 絶対は変わり得ることを学び、いろいろな考え方があることを学んできたはずである。そのような観点から ゼロ除算の解明の遅れは 奇妙な歴史的な事件である と言えるのではないだろうか。
これは、数学を超えた、真実であり、ゼロ除算は不可能であるとの 世の理解は間違っている と言える。そこで、真実を世界に広めて、人類の歴史を進化させるべきであると考える。特に声明176と声明185を参照。ゼロ除算は 堪らなく楽しい 新世界 を拓いていると考える。
以 上
1+0=1 1ー0=0 1×0=0 では、1/0・・・・・・・・・幾つでしょうか。
0??? 本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・
1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)
ゼロ除算は、不可能であると誰が最初に言ったのでしょうか・・・・
7歳の少女が、当たり前であると言っているゼロ除算を 多くの大学教授が、信じられない結果と言っているのは、まことに奇妙な事件と言えるのではないでしょうか。
割り算を掛け算の逆だと定義した人は、誰でしょう???
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。
小学校以上で、最も知られている数学の結果は何でしょうか・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
https://www.pinterest.com/pin/234468724326618408/
原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・
無限遠点は存在するが、無限大という数は存在しない・・・・
加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849/a37209195?sort=1&fr=chie_my_notice_canso
0×0=0・・・・・・・・・だから0で割れないと考えた。
アラビア数字の伝来と洋算 - tcp-ip
http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf
明治5年(1872)
割り算のできる人には、どんなことも難しくない
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
地球平面説→地球球体説
天動説→地動説
1/0=∞ 若しくは未定義 →1/0=0
地球人はどうして、ゼロ除算1300年以上もできなかったのか? 2015.7.24.9:10 意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。 生態系では、人類が がん細胞であった とならないとも 限らないのでは?
リーマン球面における無限遠点は、実は、原点0に一致していました。
Einstein's Only Mistake: Division by Zero
http://refully.blogspot.jp/2012/05/einsteins-only-mistake-division-by-zero.html
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/
Impact of 'Division by Zero' in Einstein's Static Universe and ...
gsjournal.net/Science-Journals/.../Download/2084
このページを訳す
Impact of 'Division by Zero' in Einstein's Static Universe and Newton's Equations in Classical Mechanics. Ajay Sharma physicsajay@yahoo.com. Community Science Centre. Post Box 107 Directorate of Education Shimla 171001 India.
http://gsjournal.net/Science-Journals/Research%20Papers-Relativity%20Theory/Download/2084
Reality of the Division by Zero $z/0=0$
http://www.ijapm.org/show-63-504-1.html
ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_
地球平面説→地球球体説
地球が丸いと考えた最初の人-ピタゴラス
地球を球形であることを事実によって証明しようとした人-マゼラン
地球を球形と仮定して初めて地球の大きさを測定した人-エラトステネス
天動説→地動説 アリスタルコス=ずっとアリストテレスやプトレマイオスの説が支配的だったが、約2,000年後にコペルニクスが再び太陽中心説(地動説)を唱え、発展することとなった。https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AA%E3%82%B9%E3%82%BF%E3%83%AB%E3%82%B3%E3%82%B9 …
何年かかったでしょうか????
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか???
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか???
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
Reality of the Division by Zero z/0 = 0
http://www.ijapm.org/show-63-504-1.html
http://okmr.yamatoblog.net/
1人当たり何個になるかと説いていますが、1人もいないのですから、その問題は意味をなさない。
よってこれは、はじめから問題になりません。
ついでですが、これには数学的に確定した解があって それは0であるという事が、最近発見されました。
再生核研究所声明198(2015.1.14) 計算機と人間の違い、そしてそれらの愚かさについて
まず、簡単な例として、割り算、除算の考えを振り返ろう:
声明は一般向きであるから、本質を分かり易く説明しよう。 そのため、ゼロ以上の数の世界で考え、まず、100/2を次のように考えよう:
100-2-2-2-,...,-2.
ここで、2 を何回引けるか(除けるか)と考え、いまは 50 回引いてゼロになるから分数の商は50である。
次に 3/2 を考えよう。まず、
3 - 2 = 1
で、余り1である。そこで、余り1を10倍して、 同様に
10-2-2-2-2-2=0
であるから、10/2=5 となり
3/2 =1+0.5= 1.5
とする。3を2つに分ければ、1.5である。
これは筆算で割り算を行うことを 減法の繰り返しで考える方法を示している。
ところで、 除算を引き算の繰り返しで計算する方法は、除算の有効な計算法がなかったので、実際は日本ばかりではなく、中世ヨーロッパでも計算は引き算の繰り返しで計算していたばかりか、現在でも計算機で計算する方法になっていると言う(吉田洋一;零の発見、岩波新書、34-43)。
計算機は、上記のように 割り算を引き算の繰り返しで、計算して、何回引けるかで商を計算すると言う。 計算機には、予想や感情、勘が働かないから、機械的に行う必要があり、このような手順、アルゴリズムが必要であると考えられる。 これは計算機の本質的な原理ではないだろうか。
そこで、人間は、ここでどのように行うであろうか。 100/2 の場合は、2掛ける何とかで100に近いものでと考え 大抵50は簡単に求まるのでは? 3/2も 3の半分で1.5くらいは直ぐに出るが、 2掛ける1で2、 余り1で、 次は10割る2で 5そこで、1.5と直ぐに求まるのではないだろうか。
人間は筆算で割り算を行うとき、上記で何回引けるかとは 発想せず、何回を掛け算で、感覚的に何倍入っているか、何倍引けるか、と考えるだろう。この人間の発想は教育によるものか、割り算に対して、逆演算の掛け算の学習効果を活かすように 相当にひとりでに学習するのかは極めて面白い点ではないだろうか。この発想には掛け算についての相当な経験と勘を有していなければ、有効ではない。
この簡単な計算の方法の中に、人間の考え方と計算機の扱いの本質的な違いが現れていると考える。 人間の方法には、逆の考え、すなわち積の考えや、勘、経験、感情が働いて、作業を進める点である。 計算機には柔軟な対応はできず、機械的にアルゴリズムを実行する他はない。 しかしながら、 計算機が使われた、あるいは用意された情報などを蓄積して、どんどんその意味における経験を豊かにして、求める作業を効率化しているのは 広く見られる。 その進め方は、対象、問題によっていろいろなアルゴリズムで 具体的には 複雑であるが、しかし、自動的に確定するように、機械的に定まるようになっていると考えられる ― 厳密に言うと そうではない考えもできる、すなわち、ランダムないわゆる 乱数を用いるアルゴリズムなどはそうとは言えない面もある ― グーグル検索など時間と共に変化しているが、自動的に進むシステムが構築されていると考えられる。 それで、蓄積される情報量が人間の器、能力を超えて、計算機は 人間を遥かに超え、凌ぐデータを扱うことが可能である事から、そのような学習能力は、人間のある能力を凌ぐ可能性が高まって来ている。 将棋や碁などで プロの棋士を凌ぐほどになっているのは、良い例ではないだろうか。もちろん、この観点からも、いろいろな状況に対応するアルゴリズムの開発は、計算機の進化において 大きな人類の課題になるだろう。
他方、例えば、幼児の言葉の学習過程は 神秘的とも言えるもので、個々の単語やその意味を1つずつ学習するよりは 全体的に感覚的に自動的にさえ学習しているようで、学習効果が生命の活動のように柔軟に総合的に進むのが 人間の才能の特徴ではないだろうか。
さらに、いくら情報やデータを集めても、 人間が持っている創造性は 計算機には無理のように見える。 創造性や新しい考えは 無意識から突然湧いてくる場合が多く、 創造性は計算機には無理ではないだろうか。 そのことを意識したわけではないが、人間の尊厳さを 創造性に 纏めている:
再生核研究所声明181(2014.11.25) 人類の素晴らしさ ― 7つの視点
そこでも触れているが、信仰や芸術、感情などは生命に結び付く高度な存在で、科学も計算機もいまだ立ち入ることができない世界として、生命に対する尊厳さを確認したい。
しかしながら、他方、人間の驚くべき 愚かさにも自戒して置きたい:
発想の転換、考え方の変更が難しいということである。発想の転換が 天動説を地動説に変えるのが難しかった世界史の事件のように、また、非ユークリッド幾何学を受け入れるのが大変だったように、実は極めて難しい状況がある。人間が如何に予断と偏見に満ち、思い込んだら変えられない性(さが) が深いことを 絶えず心しておく必要がある: 例えば、ゼロ除算は 千年以上も、不可能であるという烙印のもとで、世界史上でも人類は囚われていたことを述べていると考えられる。世界史の盲点であったと言えるのではないだろうか。 ある時代からの 未来人は 人類が 愚かな争いを続けていた事と同じように、人類の愚かさの象徴 と記録するだろう。 数学では、加、減、そして、積は 何時でも自由にできた、しかしながら、ゼロで割れないという、例外が除法には存在したが、ゼロ除算の簡潔な導入によって、例外なく除算もできるという、例外のない美しい世界が実現できた(再生核研究所声明180(2014.11.24) 人類の愚かさ― 7つの視点)。そこで、この弱点を克服する心得を次のように纏めている:
再生核研究所声明191(2014.12.26) 公理系、基本と人間
以 上
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
0 件のコメント:
コメントを投稿