2015年11月13日金曜日

数学を「体験」して学ぶ理数教室 DATE:2015.11.12 11:08 R25 ガジェット通信を≫

数学を「体験」して学ぶ理数教室

DATE:2015.11.12 11:08 R25
ガジェット通信を≫ 


子供のころから、いや大人になってもなお「数学は何の役に立つのか」という疑問を抱いている人は多いのではないでしょうか。

【もっと大きな画像や図表を見る】

東京と神奈川で運営する『トゥルース・アカデミー』は、数学を「体験」して学ぶことができる子供向けの教室。1989年に学習塾として始まった同教室が、ブロックやロボットなど使った理数・科学教室としてリニューアルしたのは2000年10月のこと。

「受験のために勉強をするのは、学び本来の楽しさを奪っているのではないかと感じたんです。そこでたどり着いたのが、マサチューセッツ工科大学メディアラボのシーモア・パパート教授による『コンストラクショニズム』という学習理論。知識は教師が与えるのものではなく、子供が自ら手を動かして発見するもの、という考え方です」(トゥルース・アカデミー代表取締役 中島晃芳さん)

今回取材したカリキュラム「リトル・ダヴィンチ理数教室」もその理論をもとに作られたもの。学習塾とは違って計算問題などはほぼ行わず、教材を使った体験学習を通して算数や科学の考え方を学ぶ授業がメインです。幼稚園年中から~小学3年生まで学年ごとにコースが用意され、年間の受講者は350人ほど。

例えば幼稚園生のコースでは、カエルの人形の数を見積もったり、数が描かれた円盤の上をジャンプしたり、身体を動かすことで算数を楽しく学びます。教室で使う教材はベルギーやイスラエルのものなど多数あり、「やり直しがしやすく、試行錯誤ができるもの」が教材を選ぶポイントなのだとか。

取材に訪れた飯田橋校で行われていたのは、小学2年生と小学3年生のコース。教室は生徒6人までの少人数制で、この日は1クラス2~3人の子供たちが参加。これから勉強する、という雰囲気ではなく、友だちの家に遊びに来たようにリラックスしておしゃべりをしていました。

2年生は四則演算をカードゲームで学びます。子供たちは警察と泥棒にわかれ、ボード上の駒を動かして鬼ごっこをするというルール。ボードと手元のカードには数字が書かれていて、2つの数字を四則演算した答えの数だけ駒が動かせます。足し算にするか、引き算にするか、答えがわからないと戦略が立てられません。「これじゃ捕まっちゃう」「わかった!2は引いたらいいんだよ」とワイワイ。最後は「どうやったら勝てたのか?」を振り返ります。

3年生は角度の学習。分度器や三角定規の使いかたをおさらいした後は、三角形が作る角度に注目。内角をすべて足すと180度になる、という発見をしたら、実際に三角形の形に紙を切って貼りあわせてみます。平面図形の基本を身につけたら、この先の授業では子供向けのプログラミング言語を使って図形を描きます。

「ネット時代のいま、知識は検索したら出てくるため、丸暗記に頼らずに情報を分析・考察できることが大切。正解が1つに限らない『オープンエンド』な問題について考える力を養うようにしています」(中島さん)

卒業生はほぼ100%理系に進学し、東大や早稲田、国立高専に進んだ子もいるそう。科学は実験を通して体験をすることができますが、数学の場合は体験で学ぶのが難しいもの。選びぬかれた教材を使い、手を動かして体で覚えれば、成長しても忘れない経験になるのかもしれませんね。
(井上マサキ)

■育て!子供の「理系脳」 第4回
(R25編集部)

数学を「体験」して学ぶ理数教室はコチラ

※コラムの内容は、R25から一部抜粋したものです
※一部のコラムを除き、R25では図・表・写真付きのコラムを掲載しております
http://getnews.jp/archives/1245275

再生核研究所声明189(2014.12.23) ゼロ除算の研究の勧め

再生核研究所声明185:
Announcement 185:  The importance of the division by zero z/0=0
において、ゼロ除算の結果と意義について簡潔に纏めてみたが、ゼロ除算の研究を進める立場から、研究の魅力的な面について述べたい。
まず、そもそも研究とは何かを復習し、人生の意義を確認したい:

― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―

すなわち、 真智を求めることは 人間として生きることにほかならない。しかるに、ほとんど当たり前の ゼロ除算が発見された経緯をみても、さらに、真実を知らされても、真智を求めない人は多く、実際には、人はそんなに 真智を求める精神が高いとは言えず、愚かな争いを続けてきている様をみても、人類がそんなには賢い生物でないことが分かるだろう(再生核研究所声明180(2014.11.24) 人類の愚かさ ― 7つの視点)。逆に、自由が与えられて、 野生動物以下の面が少なくない(再生核研究所声明183(2014.11.27) 野生動物と人間)。大いに自戒したい。

しかしながら、ゼロ除算において 無限遠点が 数値では ゼロで表されることは 驚嘆すべきことであり、それではuniverse は一体どうなっているのかと、真智への愛の 激しい情念が湧いてくるのではないだろうか。ゼロ除算は、数学ばかりではなく、物理学や世界観や文化にも大きな影響を与える:

再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界

ゼロ除算の研究は 数学ばかりではなく、物理学や哲学の問題にも直結している。

ゼロ除算を数学の立場からみれば、西暦628年インドでゼロが記録されて以来の発見であるから、全く未知の新しい数学、前人未到の新世界の発見である。すなわち、ゼロで割るは 不可能であるゆえに 考えてはいけないとされてきたところ、ゼロで割ることができるとなったのであるから、それでは、そのとき、どのような世界が開かれてくるか、と全く未知の世界を探検できる。 現在、新しい結果は 出版済みの高校生にでも理解できる簡単な論文、

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

と検討中の21ページの原稿
H. Michiwaki, S. Saitoh, and M. Takagi,
A new concept for the point at infinity and the division by zero z/0=0 
(note).

のみである。現在、数学は高度化、深化、細分化して、難しいのに、ゼロ除算の研究はほとんど新しい数学で、基本的、初期の段階であるから、大いに素晴らしい基本的な研究ができる状況にあると言える。
ゼロ除算の最も関与している研究は まず 第1に複素解析学への影響、複素解析学の研究ではないだろうか。実際、ゼロ除算は、ローラン展開そのものの見方から始まり、それは佐藤の超関数や特異積分などに関係している。
第2は、 ゼロ除算の物理学への影響である。 これは、ニュートンの万有引力の法則など多くの物理法則の公式に、ゼロ除算が現れているので、それらに対する新しい結果の解釈、影響である。
第3は ゼロ除算の代数的な、あるいは作用素論的な研究である。これらも始まったばかりであり、出版が確定している論文:

S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields, Tokyo Journal of Mathematics (in press).

が、この分野の最初の論文で、Dr. M. Dalla Riva氏 が半群でゼロ除算の一意性の一般化を論じて幾つかの成果をノートに纏めているだけで 広い研究課題が存在すると考えられる。

これらの分野では、誰でも先頭に立てる全く新しい研究分野と言える。
全く、新しい研究分野となると、若い人がやみくもに挑戦するのは危険だと考えるのは、 よく理解できるが、ある程度自己の研究課題が確立していて、多少の余裕がみいだせる方は、新しい世界を自分の研究課題と比較しながら、ちょっと覗いてみるかは、面白いのではないだろうか。思わぬ関係が出てくるのが、数学の研究の楽しさであると言える面は多い。アメリカ新大陸に初めて移った人たちの想い、 ピッツバーグの地域に初めて移住した人たちの想いを想像してみたい。ゼロ除算は 新しい数学である。

小学生にも理解できる、新しい基本的な数学、概念が現れた。 基本的なゆえに、ゼロ除算は、universe の理解に大きな影響を与えるのではないだろうか。この世界が どれくらいの広がりがあるかは 分からない。しかし、ゼロ除算は、簡潔な結果をもたらしたが、ゼロ除算は 同時に 新たな神秘的な構造を 世にもたらし、数学の世界を一層深いものにしている。

以 上
追記: ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku

再生核研究所声明187(2014.12.8)工科系における数学教育について

30余年 工科系で数学の教育に携わって来た者として、それらを回想して今後同じような経験をされる人たちの参考になるように省察して置きたい。
まず、工科系における数学教育の目標を抑えて置こう:
1) 工科系全般における表現の立場から、数学上の述語、概念、記号などは工科系を表現する言語として必要であるから、関係数学の習得は必要である。典型的な概念として、微積分の概念、行列の概念、微分方程式、ベクトル解析(勾配、回転、発散)、解析関数の概念などは必須の概念と考えられよう。
2) 計算機の普及、応用を待つまでもなく、論理の学習; 論理的に考え、推論して纏め、表現できるような精神の涵養に 数学教育の重要性があると考えられる。
3)高級に表現すれば、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については次を参照:

No.81, May 2012(pdf 432kb)
19/03/2012 -ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。

簡潔に述べれば、数学は 時間にも、エネルギーにもよらずに存在する神秘的な 関係の論理体系であるが、ユニバースは 数学を言語として構成されている という、信仰のような信念を抱いている。基本的な数学は ユニバースの基本的な様を表現しているのではないだろうか。すなわち、真理を追求する真摯な精神の涵養である。

それゆえに、工科系における数学教育の必要性は明らかである、それで、その明確な動機のもとで、数学教育に携われる工科系に属する数学の教師は、誠に充実感のする 社会的な使命を果たせる幸せな存在である。
担当の基本は、線形代数、微積分学、微分方程式、ベクトル解析、複素解析であろうが、それらは、理工科系の基本カリキュラムで、それらは、重要な概念を有していると考えられる。教える立場でも、ここをきちんと教えたいという、項目が多々存在する、楽しい数学である。
工科系で、生じる問題の基本は、工学 各学科の、期待、要請と 数学の専門家の担当する講義の仕方、カリキュラム内容との乖離で、しばしば問題が顕になる。上記、工科系における数学教育の目標について 科の先生方の反対意見は出ないと思われるが、近年、学生の基礎学力の大きな落ち込みの中で、科で直接必要、必須の言わば 1)の基本が疎かになり、科の教育に大きな障害が起きて、1)の強化、補充を数学教室に求めたり、科自身で補充の授業を準備する事態さえ招いている。数学教室で、科の要求する数学の内容を聞くと、相当に高級な現代的な数学の内容が広範に出てきて、対応できないような状況は よく見られる。体系的に見れば ちぐはぐ、また科の教員でも要求がバラバラな感じさえ受ける。もしそれらの要求を満たすようにするならば、辞書の項目の解説調になってしまい、数学者の好みである2)、3)項の要素が失われて、講義に熱が入らない気持ちになるのではないだろうか。― この観点が工科系における数学教育における問題の中心であると考えられる。
数学の教師の立場から見れば、自分の専門の研究に集中しすぎで、視野が狭く、工科系全般にわたる素養の貧しさを招き、しばしば独善的な講義スタイルになる傾向があるので、気をつけたい.

学科への対応の精神は、数学に分け与えられる時間数が極めて限られていて、しかも、要求される内容の豊富さを考えれば、講義内容を精選して、基礎の基礎、基本の基本をきちんと学習させ、多くの内容については、学生が必要に応じて、自分で学習できるようなるように教授するのが良いのではないだろうか。それには、まず、数学が楽しい、大いに有効であると 学生が感じられるような、そのような講義が望まれる。講義は全人格をかけた、交流の場であり、真理を追求する研究者の尊い姿が 学生への愛とともに 反映されるものでなくてはならない。学生による評価の問題で、教師が講義の有り様などいろいろ気遣い、板書やPDファイルなどの作成など講義の技術面などに関心が移っているような世相があるが、それらの営みの空虚さを指摘したい。そうではなくて、学生は、教師の学問に取り組む姿勢や、人生や社会に取り組む姿勢、全人格をみて教師を評価していることが分かるだろう。技術面のことよりは、研究者として、人間としての精進が肝要ではないだろうか。
人生とは何か、生きるということは どのようなことか、そのような問を忘れて久しいように感じられる世相ではないだろうか。学生は、いろいろな情報、勉学、就職関係の将来構想などなどで時間に追われ、教員も研究、教育に専念できず、さらに教育、研究の環境を悪化させる要務で忙しすぎて、何事じっくり取り組み、考察を深めるような貴重な時間を失っているように見える。学生時代には全人生を思考できるように 学生に自由を保証する精神が 大学教育の基本な配慮でなければならないと考える。― 学生時代は良かった、良い環境で、たっぷり自由な時間がとれた。
インターネットの普及で、いわゆる知識、単なる情報は、簡単にどこでも利用できる時代の到来は、カリキュラム、教育内容の精選と講義の有り様の変革をもたらし、自由の保証に明るい展望をもたらすのではないだろうか。その骨格として、講義、教育時間の縮小、休暇の増大、そのために一般教職員の大学の年間、1ヶ月間閉鎖、学生の休暇2ヶ月間を考えるのは良い出発点ではないだろうか。これらは既に、欧米の大学では相当に確立していて習慣になっていることも大いに参考にすべきではないだろうか。― 5年間ポルトガルのアヴェイロ大学で研究員として過ごしたが、何と8月は 大学の暦に 無かった。完全休暇である。土、日の休暇は当然で、水曜日は講義が無く、水曜日と金曜日は 昔の日本の土曜日のような調子で、金曜日午後には 多くの学生が、帰省するような情景であった。年中仕事に追われている 異常な日本の大学の有り様を見るにつけて、我々は大いに学び、大学の有り様を変革すべきだと考える。
そのような大幅な自由の下で、自主学習する風潮と日本のように 相当に学力などを気にして、詰み込み式授業の風潮のどちらが、長期的に見て優れているか、考えてみる必要があるのではないだろうか。ただし、自由の代償に 試験は相当に期間と時間を掛けて厳しくする風潮がある。
工科系に属する教員の担当学生数は、数学の所属部署で、最も多い状況にあり、ある意味で、数学を現実社会に活かす立場で それだけ大きな役割が有ると考えられる。教育ばかりではなく、入試に関与する部分も極めて大きく、入試業務は年中 心を傷めさせられる負担になっている場合が多いのではないだろうか。そもそも入試の有り様そのものの見直しを提案、問題提起しているが(再生核研究所声明20:大学入試センター試験の見直しを提案する),ポルトガルの制度を紹介して、関係者の検討を要望して置きたい:
有り様は簡単で、そもそも大学は入試業務を殆どせず、作成された資料を元に、選択するだけである。入試問題作成は国の機関が行い、入試は高校を会場に高校が期間を掛けて行なう。― このような入試で、個々の数学教員や、大学で膨大な仕事を課せられている日本の状況と比べて、唖然とさせられた。大きな仕事からの開放である。― 勿論、これは国立大学の場合であるが、私立大学などでも上記資料を参考にしているのではないだろうか。
さらに、女性数学者の割合が、殆ど自然に男女、同数であることは 数学の研究、教育、そして教室の雰囲気を日本のそれらとは相当に違ったものにしている。それらは、家庭と大学の仕事が両立出来る基礎があることを示しており、ポルトガルの大学は、相当に優雅であると表現されるだろう。7年目には 日曜日が週に有るように サバーティカルライトで1年間大学の仕事から解放される。それは、何を意味するだろうか。
以 上

再生核研究所声明219(2015.3.20)報道における理系関係の充実を

まず、報道関係について述べてきたことで、本声明に関係ある声明の部分をコンパクトに引用しよう:
再生核研究所声明165(2014.6.19) 世論について:
これを簡単に述べれば、国民の意見や文化を背景に、 マスコミや言論界が世論を構成し、国民と政治家を啓蒙し、政治を動かして行くべき と考える。マスコミや言論界が 大きな実際的な力、影響力を有するのは当然である。この意味でもマスコミや言論界の役割は大きく、逆に責任も大きいと 絶えず、精進、自戒していくことが求められる。これはまた、国民には マスコミを絶えず、批判的にみていくような態度が 求められることを意味する。
再生核研究所声明186(2014.12.6) ニュースの価値について:
そもそもニュースとは何かの議論をきちんとすべきである。上記説明では 本質がみえず、物事の本質が空虚になっていることを知るだろう。最新の情報、出来事とは何か。いずれにしても、それらは、メディア、インターネットを通して、伝えられ、広がって行くものである。問題は、情報、出来事でもほとんど無限に存在するものから、それらから、選択されて伝えられるということである。すなわち、情報、出来事は、関与する人間によって、価値判断がなされて、ニュースの価値の大小が判断され、それによって、新聞なら、どのような面に、どのくらいのスペースをもって扱われるか、テレビなどでは、画面や時間、扱われる順序などの問題が、ニュースの重要性、価値判断によって定められる。どのような価値を与え、どのように扱うは、それぞれの責任部署で判断されるだろう。
そこで、 この声明の趣旨は まさに、このニュースの重要性、価値判断について、考察することである。
まず、大事な事実は、ニュースの重要性、価値判断によっては、社会的な価値評価、判断が大きく影響を受けることである。例をあげれば、日本ではノーベル賞受賞関係は ニュースで大きく扱われるので、ノーベル賞は 相当に価値ある事として、社会で定着し、評価され、賞について付加価値がどんどん増加している事実がある。他方、数学界の最高の賞、フィールズ賞などは、相当に価値ある世界の賞であるにも関わらず、それほどのニュースにならない現実が存在する。いろいろなスポーツにおける優勝者の報道の有り様も このような観点から、興味深い。これらは、社会における影響の大小で、世の関心の大小で、そのような扱いは 止むを得ない現状があると考えられる。問題は、ニュースの重要性、価値判断をする者によって、意図的に社会的な評価が定まる要素が存在するということである。結局、ニュースの重要性、価値判断は 社会の関心、価値観、文化、習慣などから判断されて、そしてニュースを流す人の価値判断が加味されて流されるという、観点である。そこで、個人的な、あるいは仲間の利益、政治的な、あるいはもろもろの圧力で、大きくニュースの扱いが、歪められる危険性が、何時でも大きいと言える。さらに、ニュースを扱う者の基礎的な知識や素養、教養、学識、見識に大きく左右される現実がある。
再生核研究所声明208(2015.2.14) NHK 朝ドラ マッサン ― 許されない約束違反、公共放送としての問題:
また、公共放送として、教育的な要素の配慮は大事であり、 約束違反でも結果が良ければ良いでは、本末転倒であり、結果が良くなくても、意図、過程が適切ならば、評価すべきであるというが基本的な原則であるべきではないだろうか。 結果が良ければ 良いでは 世の秩序は保てず、悪い教育を全国レベルで行い、悪い影響を世にもたらすと考える。
もし、これらが、このドラマの、元々の物語に、あるいは史実に従っているとするならば、その辺の扱いには、深い、広範な配慮が 必要であると考える。マスコミや公共放送には 良い社会を築くような方向での 配慮が求められていると考える。真実を伝えれば良いとはなっていないのは当然である。 ドラマ制作関係者の注意を促し、配慮をお願いしたい。
再生核研究所声明211(2015.2.22) ドラマとは何か ― 人の心を弄ぶドラマ:
また、テレビドラマ製作者には、上記 何かの素材に基づいた場合、 実際、史実と創作の部分の大きな乖離は、真実、歴史、事実を歪めて 歴史が虚像化する危険性があるので、そのような観点について、注意を喚起して置きたい。また、視聴者は、この観点から批判的に見る必要が大事ではないだろうか。 テレビ普及時、テレビで1億総白痴化の言葉が騒がれたのを回想したい。

上記で述べてきたように、言論界、報道関係の役割は、国や社会で極めて重要な役割を果たし、言わば文化の 狭義の意味における 担い手集団と言えるだろう。
そこで、ここで注意を喚起したいのは、報道関係者には いわゆる文系の人間が多く、相対的に理系の人が少なく、そのために 文系の報道が多く、理系の取り上げられる題材が相対的に少ないのではないかという観点である。新聞記者など理系出身者が どのくらい いるのか、文芸関係者、スポーツ関係者、芸能関係者などと比較すると 大いに参考になるのではないだろうか。 もちろん、政治は 社会の大きな共通の問題であるから、報道関係に関わる人がその関係で多いのは当然である。
科学技術や科学も社会に大きな影響を与え、人々の関心も広く大きいが、それらの素養が薄い人たちが報道関係に多く関わっていて、そのために理系の題材が社会に適切に反映されていないのではないだろうか。小さな卑小な個人的な犯罪を大きく繰り返して報道していたり、繰り返し報道された 小保方氏の問題の報道などに見られる軽薄な報道には、何か問題はなかっただろうか。自然科学や技術関係の報道の充実は 報道界の大きな未開拓の分野であると注意を喚起するとともに、充実を希望して置きたい。
絶えず、報道する素材の価値について検討し、 質の高い報道の精選は大事ではないだろうか。なぜ報道し、それを受け取る者の 影響に思いを致すべきである。一方的に自社の都合で闇雲に報道するような姿勢は 良くないのではないだろうか。
以 上

再生核研究所声明222(2015.4.8)日本の代表的な数学として  ゼロ除算の研究の推進を求める

ゼロ除算の成果は 2015.3.23 明治大学で開催された日本数学会で(プログラムは5200部印刷、インターネットで公開)、海外約200名に経過と成果の発表を予告して 正規に公開された。簡単な解説記事も約200部学会で配布された。インターネットを用いて1年以上も広く国際的に議論していて、骨格の論文も出版後1年以上も経過していることもあり、成果と経過は一応の諒解が広く得られたと考えても良いと判断される。経過などについては 次の一連の声明を参照:

再生核研究所声明148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30) ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17) ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20) ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30) 掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15) ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
再生核研究所声明192(2014.12.27) 無限遠点から観る、人生、世界
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)― 
再生核研究所声明194(2015.1.2) 大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3) ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4) ゼロ除算に於ける山根の解釈100= 0x0について
再生核研究所声明200(2015.1.16) ゼロ除算と複素解析の現状 ―佐藤超関数論との関係が鍵か?
再生核研究所声明202(2015.2.2) ゼロ除算100/0=0,0/0=0誕生1周年記念声明 ― ゼロ除算の現状と期待
再生核研究所声明215(2015.3.11) ゼロ除算の教え

日本の数学が、欧米先進国のレベルに達していることは、国際研究環境の実情を見ても広く認められる。しかしながら、初等教育から大学学部レベルの基本的な数学において 日本の貢献は 残念ながら特に見当たらないと言わざるを得ない。これは日本の数学が 大衆レベルでは 世界に貢献していないことを意味する。これについて 関孝和の微積分や行列式の発見が想起されるが、世界の数学史に具体的な影響、貢献ができなかったこともあって 関孝和の天才的な業績は 残念ながら国際的に認知されているとは言えない。
そこで、基本的なゼロ除算、すなわち、四則演算において ゼロで割れないとされてきたことが、何でもゼロで割れば ゼロであるとの基本的な結果は、世界の数学界における 日本の数学の顕著なものとして 世界に定着させる 良い題材ではないだろうか。
内容の焦点としてはまず:
ゼロ除算の発見、
道脇方式によるゼロ除算の意味付け、除算の定義、
高橋のゼロ除算の一意性、
衝突における山根の現象の解釈、
の4点が挙げられる。
6歳の道脇愛羽さんが、ゼロ除算は 除算の固有の意味から自明であると述べられていることからも分かるように、ゼロ除算は、ピタゴラスの定理を超えた基本的な結果であると考えられる。
ゼロ除算の研究の発展は 日本の代表的な数学である 佐藤の超関数の理論と密接な関係にあり(再生核研究所声明200)、他方、欧米では Aristotélēs の世界観、universe は連続である との偏見に陥っている現状がある。 最後にゼロ除算の意義 に述べられているように ゼロ除算の研究は 日本の数学として発展させる絶好の分野であると考えられる。 そこで、広く関係者に研究の推進と結果の重要性についての理解と協力を求めたい。
ゼロ除算の意義:
1)西暦628年インドでゼロが記録されて以来 ゼロで割るの問題 に 簡明で、決定的な解 1/0=0, 0/0=0をもたらしたこと。
2) ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立されたこと。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、 独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていたとされている。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。
5)複素解析学では、1次変換の美しい性質が、ゼロ除算の導入によって、任意の1次変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、 極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な定理は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、 極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、 ゼロ除算にいう、 解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。

11)ゼロ除算が可能であるか否かの議論について:

現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかの未知の分野が望めて、大いに期待できる世界が拓かれる。

12)ゼロ除算は、数学ばかりではなく、 人生観、世界観や文化に大きな影響を与える。
次を参照:

再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界

ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として受け入れることである。

以 上

1+0=1 1ー0=0 1×0=0  では、1/0・・・・・・・・・幾つでしょうか。
0???  本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・
割り算を掛け算の逆だと定義した人は、誰でしょう???
まして、10個のリンゴを0人で分けた際に、取り分 が∞個の小さな部分が取り分は、どう考えてもおかしい・・・・
受け取る人がいないわけですから、取り分は0ではないでしょうか。 すなわち何でも0で割れば、0が正しいのではないでしょうか。じゃあ聞くけど、∞個は、どれだけですか???

小学校以上で、最も知られている数学の結果は何でしょうか・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
https://www.pinterest.com/pin/234468724326618408/

1/0=∞ (これは、今の複素解析学) 1/0=0 (これは、新しい数学で、Division by Zero)

原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では無限遠点はどこにあるのでしょうか・・・・・

 加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849/a37209195?sort=1&fr=chie_my_notice_canso

http://www.mirun.sctv.jp/~suugaku/%E5%A0%AA%E3%82%89%E3%81%AA%E3%81%8F%E6%A5%BD%E3%81%97%E3%81%84%E6%95%B0%E5%AD%A615.5.htm

世界中で、ゼロ除算は 不可能 か 
可能とすれば ∞  だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでもセロであるという意外な結果が得られた。

無限遠点は存在するが、無限大という数は存在しない・・・・

天動説・・・・・・∞
地動説・・・・・・0

1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。

『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、

ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
何とゼロ除算は、可能になるだろうと April 12, 2011 に 公に 予想されていたことを 発見した。

多くの数学で できないが、できるようになってきた経緯から述べられたものである。


Dividing by Nothing
by Alberto Martinez
It is well known that you cannot divide a number by zero. Math teachers write, for example, 24 ÷ 0 = undefined.

After all, other operations that seemed impossible for centuries, such as subtracting a greater number from a lesser, or taking roots of negative numbers, are now common. In mathematics, sometimes the impossible becomes possible, often with good reason.

Posted April 12, 2011More Discoverhttps://notevenpast.org/dividing-nothing/

アラビア数字の伝来と洋算 - tcp-ip
明治5年(1872)
http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf

地球平面説→地球球体説 
天動説→地動説
1/0=∞若しくは未定義 →1/0=0
地球人はどうして、ゼロ除算1300年以上もできなかったのか?  2015.7.24.9:10 意外に地球人は知能が低いのでは? 仲間争いや、公害で自滅するかも。 生態系では、人類が がん細胞であった とならないとも 限らないのでは?

ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_











0 件のコメント:

コメントを投稿