2016年9月18日日曜日

「解の公式」苦難史、ユークリッドからガロアまで

「解の公式」苦難史、ユークリッドからガロアまで

夏休みが終わり、受験生にとっては追込みの時期に入った。先日、わが塾の数学担当講師が興味深い話を聞かせてくれた。夏休み前に中学3年生が習う、二次方程式の解の公式にまつわる話だ。実生活では役に立つことはないだろうが、数学の歴史や数学者の人物像に触れる機会は一般にはあまりないと思うので紹介してみたい。
ガロアの肖像画(Wikipediaより)
 二次方程式の考え方は、紀元前のユークリッド原論まで遡ることができるらしい。また二次方程式に解が2つあることは、9世紀にアラビアの数学者アル・フワーリズミーが気付いていたそうだ。その後、16世紀にはイタリア人ジェロラモ・カルダーノによって三次方程式の解の公式が、そして、その弟子ルドヴィコ・フェラーリによって四次方程式の解の公式が発見された。そうすると、当然のことだが五次方程式の解の公式を多くの数学者が研究し始めることになった。しかし、100年たっても200年たっても誰も発見できなかった。これだけ多くの人が、しかも長期間にわたって研究しても解の公式が見つからない。そこで、ただ闇雲に発見を目指すという研究のやり方を反省する数学者が現れた。
 イタリア出身のジョゼフ=ルイ・ラグランジュは、五次方程式の解の公式は存在しないのではないか、と考え始め、それを論文にまとめた。それに触発されて、まずノルウェー人のニールス・アーベルが五次方程式には解の公式が存在しないことを証明した。その後、フランスの数学者エヴァリスト・ガロアが解の公式が存在するための条件を明らかにした。19世紀フランス七月革命のころだ。この考え方は「群論」という理論に発展し、現代数学に重要な位置を占めるものになった。また、群論はアインシュタインの特殊相対性理論におけるローレンツ群や、ハイゼンベルクらの量子力学などの現代物理学の言葉としても用いられているという。
 ガロアは数学者でありながら革命家とも呼ばれ、激動の生涯を送った。ガロアの父親は公立学校の校長から町長になり、母親も教養人だった。12歳まで母親の元で教育を受け、13歳になって寄宿制のリセ・ルイ=ル=グランに入学した。1年目はラテン語やギリシャ語で優秀な成績を修めた。しかし、2年目には学業を疎かにするようになり、結局留年をしたらしい。暇を持てあましたガロアは、当時のフランスでは重視されていなかった数学の授業にも出席するようになった。
 その数学との出会いが彼の才能を開花させた。幾何学の教科書を読み始めると、すっかり夢中になり、2年分の教材を2日で仕上げたという。その後も独学で数学の研究に打ち込み論文を発表していった。ガロア21歳の時、原因は諸説あるようだが決闘をして、その時の負傷がもとで若くして死んでいる。このことから、五次方程式の問題を考えはじめたのは10代後半と思われる。今の日本でいえば中学生か高校生の時だ。天才と言われる由縁だろう。
 数学にもこのような歴史があって今日があり、学ぶ数学一つ一つに、数学者の人生と最初の発見の時があった、ということだ。
 今年、中学校の教科書が新しく変わった。全ての教科書を調べてはいないが、二次方程式の解き方について、以前は因数分解を習ってから最後に解の公式が出てきた。新しい教科書では順番が逆になった。冷静に考えてみると、二次方程式として世の中に存在可能なもののうち、因数分解できるものはほんの僅かにすぎない。世の中の真理を理解する方法の一つとして数学を捉えると、本質的な解法は実は因数分解ではなく、解の公式のほうだ。そう考えると、新しい教科書は現実に則した順番になったといえる。http://vpoint.jp/column/72332.html

非常に興味深く読みました:

再生核研究所声明292(2016.03.2) ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算
(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)
まず基本語をウイキペディアで確認して置こう:

アレクサンドリアのエウクレイデス古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシア数学者天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。

https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%
非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。

ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。
ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。
この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。
ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。
何と ユークリッド空間で 平行線は ある意味で 全て原点で交わっている という、現象が明らかにされた。
もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。
そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。
ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。
この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。
平行線の交わりを考えてみる。交わらない異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。
一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。
ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。
                                     
以上

Matrices and Division by Zero z/0 = 0
再生核研究所声明296(2016.05.06)   ゼロ除算の混乱

ゼロ除算の研究を進めているが、誠に奇妙な状況と言える。簡潔に焦点を述べておきたい。
ゼロ除算はゼロで割ることを考えることであるが、物理学的にはアリストテレス、ニュートン、アンシュタインの相当に深刻な問題として、問題にされてきた。他方、数学界では628年にインドで四則演算の算術の法則の確立、記録とともに永年問題とされてきたが、オイラー、アーベル、リーマン達による、不可能であるという考えと、極限値で考えて無限遠点とする定説が永く定着してきている。
ところが数学界の定説には満足せず、今尚熱い話題、問題として、議論されている。理由は、ゼロで割れないという例外がどうして存在するのかという、素朴な疑問とともに、積極的に、計算機がゼロ除算に出会うと混乱を起こす具体的な懸案問題を解消したいという明確な動機があること、他の動機としてはアインシュタインの相対性理論の上手い解釈を求めることである。これにはアインシュタインが直接言及しているように、ゼロ除算はブラックホールに関係していて、ブラックホールの解明を意図している面もある。偶然、アインシュタイン以後100年 実に面白い事件が起きていると言える。偶然、20年以上も考えて解明できたとの著書さえ出版された。― これは、初めから、間違いであると理由を付けて質問を送っているが、納得させる回答が無い。実名を上げず、具体的に 状況を客観的に述べたい。尚、ゼロ除算はリーマン仮説に密接に関係があるとの情報があるが 詳しいことは分からない。
1: ゼロ除算回避を目指して、新しい代数的な構造を研究しているグループ、相当な積み重ねのある理論を、体や環の構造で研究している。例えて言うと、ゼロ除算は沢山存在するという、考え方と言える。― そのような抽象的な理論は不要であると主張している。
2:同じくゼロ除算回避を志向して 何と0/0 を想像上の数として導入し、正、負無限大とともに数として導入して、新しい数の体系と演算の法則を考え、展開している。相当なグループを作っているという。BBCでも報じられたが、数学界の評判は良くないようである。― そのような抽象的な理論は不要であると主張している。
3:最近、アインシュタインの理論の専門家達が アインシュタインの理論から、0/0=1, 1/0=無限 が出て、ゼロ除算は解決したと報告している。― しかし、これについては、論理的な間違いがあると具体的に指摘している。結果も我々の結果と違っている。
4:数学界の永い定説では、1/0 は不可能もしくは、極限の考え方で、無限遠点を対応させる. 0/0 は不定、解は何でも良いとなっている。― 数学に基本的な欠落があって、ゼロ除算を導入しなければ数学は不完全であると主張し、新しい世界観を提起している。
ここ2年間の研究で、ゼロ除算は 何時でもゼロz/0=0であるとして、 上記の全ての立場を否定して、新しい理論の建設を進めている。z/0 は 普通の分数ではなく、拡張された意味でと初期から説明しているが、今でも誤解していて、混乱している人は多い、これは真面目に論文を読まず、初めから、問題にしていない証拠であると言える。
上記、関係者たちと交流、討論しているが、中々理解されず、自分たちの建設している理論に固執しているさまがよく現れていて、数学なのに、心情の問題のように感じられる微妙で、奇妙な状況である。
我々のゼロ除算の理論的な簡潔な説明、それを裏付ける具体的な証拠に当たる結果を沢山提示しているが、中々理解されない状況である。
数学界でも永い間の定説で、初めから、問題にしない人は多い状況である。ゼロ除算は算数、ユークリッド幾何学、解析幾何学など、数学の基本に関わることなので、この問題を究明、明確にして頂きたいと要請している:

再生核研究所声明 277(2016.01.26):アインシュタインの数学不信 ― 数学の欠陥
再生核研究所声明 278(2016.01.27): 面白いゼロ除算の混乱と話題
再生核研究所声明279(2016.01.28) : ゼロ除算の意義
再生核研究所声明280(2016.01.29) : ゼロ除算の公認、認知を求める

我々のゼロ除算について8歳の少女が3週間くらいで、当たり前であると理解し、高校の先生たちも、簡単に理解されている数学、それを数学の専門家や、ゼロ除算の専門家が2年を超えても、誤解したり、受け入れられない状況は誠に奇妙で、アリストテレスの2000年を超える世の連続性についての固定した世界観や、上記天才数学者たちの足跡、数学界の定説に まるで全く嵌っている状況に感じられる。

以 上

再生核研究所声明316(2016.08.19) ゼロ除算における誤解
(2016年8月16日夜,風呂で、ゼロ除算の理解の遅れについて 理由を纏める考えが独りでに湧いた。)

6歳の道脇愛羽さんたち親娘が3週間くらいで ゼロ除算は自明であるとの理解を示したのに、近い人や指導的な数学者たちが1年や2年を経過してもスッキリ理解できない状況は 世にも稀なる事件であると考えられる。ゼロ除算の理解を進めるために その原因について、掘り下げて纏めて置きたい。
まず、結果を聞いて、とても信じられないと発想する人は極めて多い。割り算の意味を自然に拡張すると1/0=0/0=z/0 となる、関数y=1/xの原点における値がゼロであると結果を表現するのであるが、これらは信じられない、このような結果はダメだと始めから拒否する理由である。
先ずは、ゼロでは割れない、割ったことがない、は全ての人の経験で、ゼロの記録Brahmagupta(598– 668?) 以来の定説である。しかも、ゼロ除算について天才、オイラーの1/0を無限大とする間違いや、不可能性についてはライプニッツ、ハルナックなどの言明があり、厳格な近代数学において確立した定説である。さらに、ゼロ除算についてはアインシュタインが最も深く受け止めていたと言える:(George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} :Gamow, G., My World Line (Viking, New York). p 44, 1970.)。
一様に思われるのは、割り算は掛け算の逆であり、直ぐに不可能性が証明されてしまうことである。ところが、上記道脇親娘は 割り算と掛け算は別であり、割り算は、等分の考えから、掛け算ではなく、引き算の繰り返し、除算で定義されるという、考えで、このような発想から良き理解に達したと言える。
ゼロで割ったためしがないので、ゼロ除算は興味も、関心もないと言明される人も多い。
また、割り算の(分数の)拡張として得られた。この意味は結構難しく、何と、1/0=0/0=z/0 の正確な意味は分からないというのが 真実である。論文ではこの辺の記述は大事なので、注意して書いているが 真面目に論文を読む者は多いとは言えないないから、とんでもない誤解をして、矛盾だと言ってきている。1/0=0/0=z/0 らが、普通の分数のように掛け算に結びつけると矛盾は直ぐに得られてしまう。したがって、定義された経緯、意味を正確に理解するのが 大事である。数学では、定義をしっかりさせる事は基本である。― ゼロ除算について、情熱をかけて研究している者で、ゼロ除算の定義をしっかりさせないで混乱している者が多い。
次に関数y=1/xの原点における値がゼロである は 実は定義であるが、それについて、面白い見解は世に多い。アリストテレス(Aristotelēs、前384年 - 前322年3月7日)の世界観の強い影響である。ゼロ除算の歴史を詳しく調べている研究者の意見では、ゼロ除算を初めて考えたのはアリストテレスで真空、ゼロの比を考え、それは考えられないとしているという。ゼロ除算の不可能性を述べ、アリストテレスは 真空、ゼロと無限の存在を嫌い、物理的な世界は連続であると考えたという。西欧では アリストテレスの影響は大きく、聖書にも反映し、ゼロ除算ばかりではなく、ゼロ自身も受け入れるのに1000年以上もかかったという、歴史解説書がある。ゼロ除算について、始めから国際的に議論しているが、ゼロ除算について異様な様子の背景にはこのようなところにあると考えられる。関数y=1/xの原点における値が無限に行くと考えるのは自然であるが、それがx=0で突然ゼロであるという、強力な不連続性が、感覚的に受け入れられない状況である。解析学における基本概念は 極限の概念であり、連続性の概念である。ゼロ除算は新規な現象であり、なかなか受け入れられない。
ゼロ除算について初期から交流、意見を交わしてきた20年来の友人との交流から、極めて基本的な誤解がある事が、2年半を越えて判明した。勿論、繰り返して述べてきたことである。ゼロ除算の運用、応用についての注意である。
具体例で注意したい。例えば簡単な関数 y=x/(x -1) において x=1 の値は 形式的にそれを代入して 1/0=0 と考えがちであるが、そのような考えは良くなく、y = 1 + 1/(x -1) からx=1 の値は1であると考える。関数にゼロ除算を適用するときは注意が必要で、ゼロ除算算法に従う必要があるということである。分子がゼロでなくて、分母がゼロである場合でも意味のある広い世界が現れてきた。現在、ゼロ除算算法は広い分野で意味のある算法を提起しているが、詳しい解説はここでは述べないことにしたい。注意だけを指摘して置きたい。
ゼロ除算は アリストテレス以来、あるいは西暦628年インドにおけるゼロの記録と、算術の確立以来、またアインシュタインの人生最大の懸案の問題とされてきた、ゼロで割る問題 ゼロ除算は、本質的に新しい局面を迎え、数学における基礎的な部分の欠落が明瞭になってきた。ここ70年を越えても教科書や学術書における数学の基礎的な部分の変更 かつて無かった事である。と述べ、大きな数学の改革を提案している:
再生核研究所声明312(2016.07.14) ゼロ除算による 平成の数学改革を提案する

以 上

0 件のコメント:

コメントを投稿