2016年4月30日土曜日

Claude Elwood Shannon

NEW !
テーマ:
クロード・エルウッド・シャノン(Claude Elwood Shannon, 1916年4月30日 - 2001年2月24日)はアメリカ合衆国の電気工学者、数学者。20世紀科学史における、最も影響を与えた科学者の一人である。
情報理論の考案者であり、情報理論の父と呼ばれた。情報、通信、暗号、データ圧縮、符号化など今日の情報社会に必須の分野の先駆的研究を残した。アラン・チューリングやジョン・フォン・ノイマンらとともに今日のコンピュータ技術の基礎を作り上げた人物として、しばしば挙げられる。
目次 [非表示]
1 業績
1.1 デジタル回路設計の創始者
1.2 情報理論の考案
1.2.1 シャノンの定理
1.3 標本化定理の証明
1.4 暗号理論に関する先駆的成果
1.5 シャノンのチェスプログラム
2 受賞歴
3 栄誉
4 脚注
5 著書
6 関連項目
7 外部リンク
業績[編集]
デジタル回路設計の創始者[編集]
1937年のマサチューセッツ工科大学での修士論文「継電器及び開閉回路の記号的解析」[1]において、電気回路(ないし電子回路)が論理演算に対応することを示した。すなわち、スイッチのオン・オフを真理値に対応させると、スイッチの直列接続はANDに、並列接続はORに対応することを示し、論理演算がスイッチング回路で実行できることを示した。これは、デジタル回路・論理回路の概念の確立であり、それ以前の電話交換機などが職人の経験則によって設計されていたものを一掃し、数学的な理論に基づいて設計が行えるようになった。どんなに複雑な回路でも、理論に基づき扱えるということはコンピュータの実現に向けたとても大きなステップの一つだったと言える。
ハーバード大学教授のハワード・ガードナー(Howard Gardner)は、この論文について「たぶん今世紀で最も重要で、かつ最も有名な修士論文」と評した。ただし、わずかな時間差であるが、中嶋章による発表の方が先行しており(論理回路#歴史を参照)、独立な成果か否かは不明とされている。
情報理論の考案[編集]
1948年ベル研究所在勤中に論文「通信の数学的理論」[2]を発表し、それまで曖昧な概念だった「情報」(information)について数量的に扱えるように定義し、情報についての理論(情報理論)という新たな数学的理論を創始した。
翌年ウォーレン・ウィーバー(Warren Weaver)の解説を付けて出版された同名(ただし“A”が“The”に変わっている)の書籍『通信の数学的理論』[3]で、シャノンは通信におけるさまざまな基本問題を取り扱うために、情報の量(情報量)を事象の起こる確率によって定義し、連続して起こる確率事象Xの情報量の期待値(平均情報量)であるエントロピー
H(X)=\sum_i\Pr[X=i]\log\Pr[X=i] (台が有限の場合)
の概念を導入した(エントロピー#情報理論におけるエントロピーとの関係も参照)。エントロピーの語を提案したのはフォン・ノイマンとも言われているが、シャノンは否定している[4]。また、情報量の単位としてビットを初めて使用した[5]。
そして、ノイズ(雑音)がない通信路で効率よく情報を伝送するための符号化(「情報源符号化定理」または「シャノンの第一基本定理」)と、ノイズがある通信路で正確に情報を伝送するための誤り訂正符号(「通信路符号化定理」または「シャノンの第二基本定理」)という現在のデータ伝送での最も重要な概念を導入した。これらはそれぞれデータ圧縮の分野と誤り訂正符号の分野の基礎理論となっている。通信路符号化定理は単一通信路あたりの伝送容量に上限があることを意味する。
これらの定理は現在、携帯電話などでの通信技術の基礎理論となっており、その後の情報革命と呼ばれる情報技術の急速な発展に結びついている。
シャノンの定理[編集]
詳細は「シャノン=ハートレーの定理」を参照
C = W \log_{2}\left( 1 + \frac{S}{N} \right)
(ここでC:ビット毎秒、W:帯域幅、S:信号電力、N:ノイズ電力)
標本化定理の証明[編集]
アナログデータをデジタルデータへと変換する時、どの程度の間隔でサンプリングすればよいかを定量的に表す標本化定理を1949年の論文"Communication in the Presence of Noise"の中で証明した。標本化定理は1928年にハリー・ナイキストによって予想されており、またシャノンの証明発表の同時期に証明をした人物が複数存在するが、シャノンのものが最も有名であり、英語圏では「ナイキスト=シャノンの標本化定理」という名前で知られている(詳しくは標本化定理を参照)。標本化定理は、現在、コンパクトディスクを始めとしたあらゆるデジタイズ技術の基礎定理となっている。
暗号理論に関する先駆的成果[編集]
1949年に論文「秘匿系の通信理論」[6]を発表し、ワンタイムパッドを利用すると情報理論的に解読不可能な暗号が構成でき、情報理論的に解読不可能な暗号はワンタイムパッドの利用に限ることを数学的に証明した(現代の暗号研究で考察されている計算量的に安全な暗号ではなく、情報理論的に安全な暗号を考察している点に注意)。
シャノンはこの論文で、暗号のアルゴリズム(暗号化方法)が知られてもなお安全である暗号(ケルクホフスの原理参照)について考察しており、はじめて暗号について数学的分析を行った。
シャノンのチェスプログラム[編集]
1949年にコンピュータチェスに関する画期的な論文「チェスのためのコンピュータプログラミング」[7]を発表し、力ずくの総当たりでなくコンピュータがチェスをする方法を示した。コンピュータがどの駒をどう移動するかを決定するのにシャノンが用いた方法が、評価関数に基づいたミニマックス法だった。評価関数は、駒の価値や、駒の位置の価値、移動の価値などをすべて数値化して「局面」の価値を評価するものであり、シャノンはその後のゲーム展開を探索木(Search tree)に分類してどの着手がもっとも良いかを探索する方法について考察している。この論文はコンピュータゲームでのコンピュータの思考プログラム設計の原典となった。
受賞歴[編集]
https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AD%E3%83%BC%E3%83%89%E3%83%BB%E3%82%B7%E3%83%A3%E3%83%8E%E3%83%B3

再生核研究所声明 277(2016.01.26):アインシュタインの数学不信 ― 数学の欠陥

(山田正人さん:散歩しながら、情念が湧きました:2016.1.17.10時ころ 散歩中)

西暦628年インドでゼロが記録され、四則演算が考えられて、1300年余、ようやく四則演算の法則が確立された。ゼロで割れば、何時でもゼロになるという美しい関係が発見された。ゼロでは割れない、ゼロで割ることを考えてはいけないは 1000年を超える世界史の常識であり、天才オイラーは それは、1/0は無限であるとの論文を書き、無限遠点は 複素解析学における100年を超える定説、確立した学問である。割り算を掛け算の逆と考えれば、ゼロ除算が不可能であることは 数学的に簡単に証明されてしまう。
しかしながら、ニュートンの万有引力の法則,アインシュタインの特殊相対性理論にゼロ除算は公式に現れていて、このような数学の常識が、物理的に解釈できないジレンマを深く内蔵してきた。そればかりではなく、アリストテレスの世界観、ゼロの概念、無とか、真空の概念での不可思議さゆえに2000年を超えて、議論され、そのため、ゼロ除算は 神秘的な話題 を提供させてきた。実際、ゼロ除算の歴史は ニュートンやアインシュタインを悩ましてきたと考えられる。
ニュートンの万有引力の法則においては 2つの質点が重なった場合の扱いであるが、アインシュタインの特殊相対性理論においては ローレンツ因子 にゼロになる項があるからである。
特にこの点では、深刻な矛盾、問題を抱えていた。
特殊相対性理論では、光速の速さで運動しているものの質量はゼロであるが、光速に近い速さで運動するものの質量(エネルギー)が無限に発散しているのに、ニュートリノ素粒子などが、光速に極めて近い速度で運動しているにも拘わらず 小さな質量、エネルギーを有しているという矛盾である。
そこで、この矛盾、ゼロ除算の解釈による矛盾に アインシュタインが深刻に悩んだものと思考される。実際 アインシュタインは 数学不信を公然と 述べている:

What does Einstein mean when he says, "I don't believe in math"?
https://www.quora.com/What-does-Einstein-mean-when-he-says-I-dont-believe-in-math
アインシュタインの数学不信の主因は アインシュタインが 難解で抽象的な数学の理論に嫌気が差したものの ゼロ除算の間違った数学のためである と考えられる。(次のような記事が見られるが、アインシュタインが 逆に間違いをおかしたのかは 大いに気になる:Sunday, 20 May 2012
Einstein's Only Mistake: Division by Zero)

簡単なゼロ除算について 1300年を超える過ちは、数学界の歴史的な汚点であり、物理学や世界の文化の発展を遅らせ、それで、人類は 猿以下の争いを未だに続けていると考えられる。
数学界は この汚名を速やかに晴らして、数学の欠陥部分を修正、補充すべきである。 そして、今こそ、アインシュタインの数学不信を晴らすべきときである。数学とは本来、完全に美しく、永遠不滅の、絶対的な存在である。― 実際、数学の論理の本質は 人類が存在して以来 どんな変化も認められない。数学は宇宙の運動のように人間を離れた存在である。
再生核研究所声明で述べてきたように、ゼロ除算は、数学、物理学ばかりではなく、広く人生観、世界観、空間論を大きく変え、人類の夜明けを切り拓く指導原理になるものと思考される。
以 上

Impact of ‘Division by Zero’ in Einstein’s Static Universe and Newton’s Equations in Classical Mechanics. Ajay Sharma physicsajay@yahoo.com Community Science Centre. Post Box 107 Directorate of Education Shimla 171001 India

Key Words Aristotle, Universe, Einstein, Newton http://gsjournal.net/Science-Journals/Research%20Papers-Relativity%20Theory/Download/2084

再生核研究所声明 278(2016.01.27): 面白いゼロ除算の混乱と話題

Googleサイトなどを参照すると ゼロ除算の話題は 膨大であり、世にも珍しい現象と言える(division by zero: 約298 000 000結果(0.51秒)
検索結果
ゼロ除算 - ウィキペディア、フリー百科事典
https://en.wikipedia.org/wiki/ Division_by_zero
このページを翻訳
数学では、ゼロ除算は、除数(分母)がゼロである部門です。このような部門が正式に配当である/ 0をエスプレッソすることができます(2016.1.19.13:45)).

問題の由来は、西暦628年インドでゼロが記録され、四則演算が考えられて、1300年余、ゼロでは割れない、ゼロで割ることを考えてはいけないは 1000年を超える世界史の常識であり、天才オイラーは それは、1/0は無限であるとの論文を書き、無限遠点は 複素解析学における100年を超える定説、確立した学問である。割り算を掛け算の逆と考えれば、ゼロ除算が不可能であることは 数学的に簡単に証明されてしまう。しかしながら、アリストテレスの世界観、ゼロの概念、無とか、真空の概念での不可思議さゆえに2000年を超えて、議論され、そのため、ゼロ除算は 神秘的な話題 を提供させてきた。
確定した数学に対していろいろな存念が湧き、話題が絶えないことは 誠に奇妙なことと考えられる。ゼロ除算には 何か問題があるのだろうか。
先ず、多くの人の素朴な疑問は、加減乗除において、ただひとつの例外、ゼロで割ってはいけないが、奇妙に見えることではないだろうか。例外に気を惹くは 何でもそうであると言える。しかしながら、より広範に湧く疑問は、物理の基本法則である、ニュートンの万有引力の法則,アインシュタインの特殊相対性理論に ゼロ除算が公式に現れていて、このような数学の常識が、物理的に解釈できないジレンマを深く内蔵してきた。実際、ゼロ除算の歴史は ニュートンやアインシュタインを悩ましてきたと考えられる。
ニュートンの万有引力の法則においては 2つの質点が重なった場合の扱いであるが、アインシュタインの特殊相対性理論においては ローレンツ因子 にゼロになる項があるからである。
特にこの点では、深刻な矛盾、問題を抱えていた。
特殊相対性理論では、光速の速さで運動しているものの質量はゼロであるが、光速に近い速さで運動するものの質量(エネルギー)が無限に発散しているのに、ニュートリノ素粒子などが、光速に極めて近い速度で運動しているにも拘わらず 小さな質量、エネルギーを有しているという矛盾である。それゆえにブラックホール等の議論とともに話題を賑わしてきている。最近でも特殊相対性理論とゼロ除算、計算機科学や論理の観点でゼロ除算が学術的に議論されている。次のような極めて重要な言葉が残されている:
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970

スマートフォン等で、具体的な数字をゼロで割れば、答えがまちまち、いろいろなジョーク入りの答えが出てくるのも興味深い。しかし、計算機がゼロ除算にあって、実際的な障害が起きた:

ヨークタウン (ミサイル巡洋艦)ヨークタウン(USS Yorktown, DDG-48/CG-48)は、アメリカ海軍のミサイル巡洋艦。タイコンデロガ級ミサイル巡洋艦の2番艦。艦名はアメリカ独立戦争のヨークタウンの戦いにちなみ、その名を持つ艦としては5隻目。
艦歴[編集]
1997年9月21日バージニア州ケープ・チャールズ沿岸を航行中に、乗組員がデータベースフィールドに0を入力したために艦に搭載されていたRemote Data Base Managerでゼロ除算エラーが発生し、ネットワーク上の全てのマシンのダウンを引き起こし2時間30分にわたって航行不能に陥った。 これは搭載されていたWindows NT 4.0そのものではなくアプリケーションによって引き起こされたものだったが、オペレーティングシステムの選択への批判が続いた。[1]
2004年12月3日に退役した。
出典・脚注[編集]
1. ^ Slabodkin, Gregory (1998年7月13日). “Software glitches leave Navy Smart Ship dead in the water”. Government Computer News. 2009年6月18日閲覧。
 これはゼロ除算が不可能であるから、計算機がゼロ除算にあうと、ゼロ除算の誤差動で重大な事故につながりかねないことを実証している。それでゼロ除算回避の数学を考えている研究者もいる。論理や計算機構造を追求して、代数構造を検討したり、新しい数を導入して、新しい数体系を提案している。

確立している数学について話題が尽きないのは、思えば、ゼロ除算について、何か本質的な問題があるのだろうかと考えられる。 火のないところに煙は立たないという諺がある。 ゼロ除算は不可能であると 考えるか、無限遠点の概念、無限か と考えるのが 数百年間を超える数学の定説であると言える。
ところがその定説が、 思いがけない形で、完全に覆り、ゼロ除算は何時でも可能で、ゼロで割れば何時でもゼロになるという美しい結果が 2014.2.2 発見された。 結果は3篇の論文に既に出版され、日本数会でも発表され、大きな2つの国際会議でも報告されている。 ゼロ除算の詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku

また、再生核研究所声明の中でもいろいろ解説している。


以 上

再生核研究所声明 279(2016.01.28) ゼロ除算の意義

ここでは、ゼロ除算発見2周年目が近づいた現時点における ゼロ除算100/0=0, 0/0=0の意義を箇条書きで纏めて置こう。

1)。西暦628年インドでゼロが記録されて以来 ゼロで割るという問題 に 簡明で、決定的な解決をもたらした。数学として完全な扱いができたばかりか、結果が世の普遍的な現象を表現していることが実証された。それらは3篇の論文に公刊され、第4論文も出版が決まり、さらに4篇の論文原稿があり、討論されている。2つの大きな国際会議で報告され、日本数学会でも2件発表され、ゼロ除算の解説(2015.1.14;14ページ)を1000部印刷配布、広く議論している。また, インターネット上でも公開で解説している:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku
2) ゼロ除算の導入で、四則演算 加減乗除において ゼロでは 割れない の例外から、例外なく四則演算が可能である という 美しい四則演算の構造が確立された。
3)2千年以上前に ユークリッドによって確立した、平面の概念に対して、おおよそ200年前に非ユークリッド幾何学が出現し、特に楕円型非ユークリッド幾何学ではユークリッド平面に対して、無限遠点の概念がうまれ、特に立体射影で、原点上に球をおけば、 原点ゼロが 南極に、無限遠点が 北極に対応する点として 複素解析学では 100年以上も定説とされてきた。それが、無限遠点は 数では、無限ではなくて、実はゼロが対応するという驚嘆すべき世界観をもたらした。
4)ゼロ除算は ニュートンの万有引力の法則における、2点間の距離がゼロの場合における新しい解釈、独楽(コマ)の中心における角速度の不連続性の解釈、衝突などの不連続性を説明する数学になっている。ゼロ除算は アインシュタインの理論でも重要な問題になっていて、特殊相対性理論やブラックホールなどの扱いに重要な新しい視点を与える。数多く存在する物理法則を記述する方程式にゼロ除算が現れているが、それらに新解釈を与える道が拓かれた。次のような極めて重要な言葉に表されている:
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as the biggest blunder of his life [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970
5)複素解析学では、1次分数変換の美しい性質が、ゼロ除算の導入によって、任意の1次分数変換は 全複素平面を全複素平面に1対1 onto に写すという美しい性質に変わるが、極である1点において不連続性が現れ、ゼロ除算は、無限を 数から排除する数学になっている。
6)ゼロ除算は、不可能であるという立場であったから、ゼロで割る事を 本質的に考えてこなかったので、ゼロ除算で、分母がゼロである場合も考えるという、未知の新世界、新数学、研究課題が出現した。
7)複素解析学への影響は 未知の分野で、専門家の分野になるが、解析関数の孤立特異点での性質について新しいことが導かれる。典型的な定理は、どんな解析関数の孤立特異点でも、解析関数は 孤立特異点で、有限な確定値をとる である。佐藤の超関数の理論などへの応用がある。
8)特異積分におけるアダマールの有限部分や、コーシーの主値積分は、弾性体やクラック、破壊理論など広い世界で、自然現象を記述するのに用いられている。面白いのは 積分が、もともと有限部分と発散部分に分けられ、極限は 無限たす、有限量の形になっていて、積分は 実は、普通の積分ではなく、そこに現れる有限量を便宜的に表わしている。ところが、その有限量が実は、ゼロ除算にいう、解析関数の孤立特異点での 確定値に成っていること。いわゆる、主値に対する解釈を与えている。これはゼロ除算の結果が、広く、自然現象を記述していることを示している。
9)中学生や高校生にも十分理解できる基本的な結果をもたらした:
基本的な関数y = 1/x のグラフは、原点で ゼロである;すなわち、 1/0=0 である。
10)既に述べてきたように 道脇方式は ゼロ除算の結果100/0=0, 0/0=0および分数の定義、割り算の定義に、小学生でも理解できる新しい概念を与えている。多くの教科書、学術書を変更させる大きな影響を与える。

11)ゼロ除算が可能であるか否かの議論について:

現在 インターネット上の情報でも 世間でも、ゼロ除算は 不可能であるとの情報が多い。それは、割り算は 掛け算の逆であるという、前提に議論しているからである。それは、そのような立場では、勿論 正しいことである。出来ないという議論では、できないから、更には考えられず、その議論は、不可能のゆえに 終わりになってしまう ― もはや 展開の道は閉ざされている。しかるに、ゼロ除算が 可能であるとの考え方は、それでは、どのような理論が 展開できるのかの未知の分野が望めて、大いに期待できる世界が拓かれる。

12)ゼロ除算は、数学ばかりではなく、人生観、世界観や文化に大きな影響を与える。
次を参照:

再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明188(2014.12.16)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観 。

ゼロ除算における新現象、驚きとは Aristotélēs の世界観、universe は連続である を否定して、強力な不連続性を universe の現象として受け入れることである。

13) ゼロ除算は ユークリッド幾何学にも基本的に現れ、いわば、素朴な無限遠点に関係するような平行線、円と直線の関係などで本質的に新しい現象が見つかり、現実の現象の説明に合致する局面が拓かれた。

14) 最近、3つのグループの研究に遭遇した:

論理、計算機科学 代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の検討(T. S. Reis and James A.D.W. Anderson)。

これらの理論は、いずれも不完全、人為的で我々が確定せしめたゼロ除算が、確定的な数学であると考えられる。世では、未だゼロ除算について不可思議な議論が続いているが、数学的には既に確定していると考えられる。

そこで、これらの認知を求め、ゼロ除算の研究の促進を求めたい:

再生核研究所声明 272(2016.01.05): ゼロ除算の研究の推進を、
再生核研究所声明259(2015.12.04): 数学の生態、旬の数学 ―ゼロ除算の勧め。

以 上


Impact of ‘Division by Zero’ in Einstein’s Static Universe and Newton’s Equations in Classical Mechanics. Ajay Sharma physicsajay@yahoo.com Community Science Centre. Post Box 107 Directorate of Education Shimla 171001 India

KeyWords Aristotle, Universe, Einstein, Newton http://gsjournal.net/Science-Journals/Research%20Papers-Relativity%20Theory/Download/2084

再生核研究所声明280(2016.01.29) ゼロ除算の公認、認知を求める

ゼロで割ること、すなわち、ゼロ除算は、西暦628年インドでゼロが記録されて以来の懸案の問題で、神秘的な話題を提供してきた。最新の状況については声明279を参照。ゼロ除算は 数学として完全な扱いができたばかりか、結果が世の普遍的な現象を表現していることが実証された。それらは3篇の論文に公刊され、第4論文も出版が決まり、さらに4篇の論文原稿があり、討論されている。2つの招待された国際会議で報告され、日本数学会でも2件発表された。また、ゼロ除算の解説(2015.1.14;14ページ)を1000部印刷配布、広く議論している。さらに, インターネット上でも公開で解説している:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku
最近、3つの研究グループに遭遇した:

論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。

これらの理論は、いずれも不完全、人為的で我々が確定せしめたゼロ除算が、確定的な数学であると考える。世では、未だゼロ除算について不可思議な議論が続いているが、数学的には既に確定していると考える。
ゼロ除算について、不可能であるとの認識、議論は、簡単なゼロ除算について 1300年を超える過ちであり、数学界の歴史的な汚点である。そのために数学を始め、物理学や世界の文化の発展を遅らせ、それで、人類は 猿以下の争いを未だ続けていると考えられる。
数学界は この汚名を速やかに晴らして、数学の欠陥部分を修正、補充すべきである。 そして、今こそ、アインシュタインの数学不信を晴らすべきときである。数学とは本来、完全に美しく、永遠不滅の、絶対的な存在である。― 実際、数学の論理の本質は 人類が存在して以来 どんな変化も認められない。数学は宇宙の運動のように人間を離れた存在である。
再生核研究所声明で述べてきたように、ゼロ除算は、数学、物理学ばかりではなく、広く人生観、世界観、空間論を大きく変え、人類の夜明けを切り拓く指導原理になるものと考える。
そこで、発見から、2年目を迎えるのを期に、世の影響力のある方々に ゼロ除算の結果の公認、社会的に 広い認知が得られるように 協力を要請したい。

文献:

1) J. P. Barukcic and I. Barukcic, Anti Aristotle - The Division Of Zero By Zero,
ViXra.org (Friday, June 5, 2015)
© Ilija Barukčić, Jever, Germany. All rights reserved. Friday, June 5, 2015 20:44:59.

2) J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

3) M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI:10.12732/ijam.v27i2.9. 

4) H. Michiwaki, S. Saitoh, and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM (International J. of Applied Physics and Math. 6(2015), 1--8.  http://www.ijapm.org/show-63-504-1.html

5) T. S. Reis and James A.D.W. Anderson,
Transdifferential and Transintegral Calculus, Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I WCECS 2014, 22-24 October, 2014, San Francisco, USA

6) T. S. Reis and James A.D.W. Anderson,
Transreal Calculus, IAENG International J. of Applied Math., 45: IJAM_45_1_06.

7) S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

7) S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no.2. 369-380.

8) Saitoh, S., A reproducing kernel theory with some general applications (31pages)ISAAC (2015) Plenary speakers 13名 による本が スプリンガーから出版される。

以 上







ユークリッドが書いた原論とはどういうものなんですか?

ユークリッドが書いた原論とはどういうものなんですか?
共感した 0
閲覧数:2,081 回答数:2 お礼:500枚 違反報告

ベストアンサーに選ばれた回答
プロフィール画像
feynman2007さん 2010/9/2321:51:54
それまでの数学の知識を体系的にまとめ、後世に大きな影響を与えたものですね。

ユークリッドは独創的な数学者というよりも、むしろすぐれた編集者だったといったほうが適当でしょう。彼はそれまでの人たちによってなされた幾何学の証明を明快な言葉に置き換えて体系化したんです。

「原論」は西方世界では聖書に次いで広く読まれた本で、多くの言語に翻訳されています。原論は数学における聖典とも言うべきもので、約2200年間に渡って幾何学教育を支配しました。今から100年ほど前までは世界中で高等学校の教科書として、そのまま使われていたほどなんです。

原論は全13巻からなっていて、第1巻から第4巻までは平面幾何学を扱っていて、三角形の合同、面積の相等、ピタゴラスの定理、長方形と等積の正方形の作図、黄金分割、円、正多角形の問題が論じられています。第5巻では幾何学的図形を使って比例の問題を論じ、第6巻ではそれを相似三角形の問題に応用しています。

第7巻から第9巻までは数論で、約数、素数、幾何級数の和などが論じられています。2つの数の最大公約数を求める「ユークリッドの方法」は、第7巻で、無限個の素数の存在を主張する「ユークリッドの定理」は第9巻で述べられています。第10巻は原論の中で最も難解な無理数の議論となっています。第11巻から第13巻までは立体幾何学を扱っていて、立体角、平行六面体、角柱、角錐の面積、5種類の正多面体などが論じられています。

ユークリッドの原論は幾何学の教科書でしたが、単なる幾何学の教科書ではなく、哲学や論理学の模範にもなりました。

哲学の祖はユークリッドよりも少し前の、ギリシアの哲学者ソクラテスや、ソクラテスの弟子だったプラトンです。プラトンはアカデミアの森に学校を開き、その森の入り口に「幾何学を知らざるものはこの門を入るべからず」と記したといいます。つまり、プラトンは幾何学が哲学や論理学の基本だと考えていたんですね。

プラトン自身は専門の幾何学者でもなければ数学者でもありませんでした。しかし彼は、幾何学に代表される数学では、議論の前にその中で使われる言葉の意味をはっきりと「定義」し、議論の基礎や根拠となる事柄をはっきりと示す「公理」あるいは「公準」をはっきりさせるべきだと述べています。これは、数学だけでなく哲学や論理学についてもいえることですね。

そのプラトンの主張どおりに幾何学の教科書を書いたのはユークリッドでした。ユークリッドの原論の第1巻のはじめには、23の定義と、5つの公理及び公準が掲げられています。

このように、原論というのは数学だけでなく、哲学、論理学などといった様々な学問の発展に計り知れない影響を与えてきたものなんですよ。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1447528459

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 293: Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
\date{\today}
\maketitle
{\bf Abstract: } In this announcement, for its importance we would like to declare that any parallel lines have the common point $(0,0) $ in the sense of the division by zero. From this fact we have to change our basic idea for the Euclidean plane and we will see a new world for not only mathematics, but also the universe. 

\bigskip
\section{Introduction}
%\label{sect1}
By a {\bf natural extension} of the fractions
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$
\begin{equation}
\frac{b}{0}=0, 
\end{equation}
incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers. The result is a very special case for general fractional functions in \cite{cs}. 

The division by zero has a long and mysterious story over the world (see, for example, Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,
Sin-Ei, Takahasi (\cite{taka}) (see also \cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

\bigskip

{\bf Proposition 1. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ satisfying
$$
F (b, a)F (c, d)= F (bc, ad) 
$$ 
for all
$$
a, b, c, d \in {\bf C }
$$
and 
$$
F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $ 
$$
F (b, 0) = 0.
$$
}


\medskip
We thus should consider, for any complex number $b$, as (1.2); 
that is, for the mapping
\begin{equation}
w = \frac{1}{z},
\end{equation}
the image of $z=0$ is $w=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere (\cite{ahlfors}). Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

However, the division by zero (1.2) is now clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

\medskip
1) by the generalization of the fractions by the Tikhonov regularization or by the Moore-Penrose generalized inverse, 

\medskip
2) by the intuitive meaning of the fractions (division) by H. Michiwaki,

\medskip
3) by the unique extension of the fractions by S. Takahasi, as in the above,

\medskip
4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from ${\bf C}$ onto ${\bf C}$, 

\medskip
and

\medskip

5) by considering the values of functions with the mean values of functions.
\medskip

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

\medskip

\medskip
A) a field structure containing the division by zero --- the Yamada field ${\bf Y}$,

\medskip
B) by the gradient of the $y$ axis on the $(x,y)$ plane --- $\tan \frac{\pi}{2} =0$,
\medskip

C) by the reflection $1/\overline{z}$ of $z$ with respect to the unit circle with center at the origin on the complex $z$ plane --- the reflection point of zero is zero,
\medskip

and
\medskip

D) by considering rotation of a right circular cone having some very interesting
phenomenon from some practical and physical problem --- EM radius.

\medskip

See also \cite{bht} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their paper.

Meanwhile, J. P. Barukcic and I. Barukcic (\cite{bb}) discussed recently the relation between the division $0/0$ and special relative theory of Einstein. 

Furthermore, Reis and Anderson (\cite{ra,ra2}) extends the system of the real numbers by defining division by zero. 

Meanwhile, we should refer to up-to-date information:

{\it Riemann Hypothesis Addendum - Breakthrough

Kurt Arbenz
https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum - Breakthrough.}

\medskip

Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

For our results, see the survey style announcements 179,185,237,246, 247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252}).

At this moment, the following theorem may be looked as the fundamental theorem of the division by zero:


\bigskip
{\bf Theorem (\cite{mst}).} {\it Any analytic function takes a definite value at an isolated singular point }{\bf with a natural meaning.}

\bigskip
The following corollary shows how to determine the value of an analytic function at the singular point; that is, the value is determined from the regular part of the Laurent expansion:

\bigskip

{\bf Corollary.} {\it For an isolated singular point $a$ of an analytic function $f(z)$, we have the Cauchy integral formula
$$
f(a) = \frac{1}{2\pi i} \int_{\gamma} f(z) \frac{dz}{z - a},
$$
where the $\gamma$ is a rectifiable simple Jordan closed curve that surrounds one time the point $a$
on a regular region of the function $f(z)$.
}

\bigskip

The essential meaning of this theorem and corollary is given by that: the values of functions may be understood in the sense of the mean values of analytic functions.


\medskip

In this announcement, we will state the basic property of parallel lines by the division by zero on the Euclidean plane and we will be able to see that the division by zero introduces a new world and fundamental mathematics.

In particular, note that the concept of parallel lines is very important in the Euclidean plane and non-Euclidean geometry. The essential results may be stated as known since the discovery of the division by zero $z/0=0$. However, for importance, we would like to state clearly the details.


\section{The point at infinity}

We will be able to see the whole Euclidean plane by the stereographic projection into the Riemann sphere --- {\it We think that in the Euclidean plane, there does not exist the point at infinity}. 
However, we can consider it as a limit like $\infty$. Recall the definition of $z \to \infty$ by $\epsilon$-$\delta$ logic; that is, $\lim_{z \to \infty} z = \infty$ if and only if for any large $M>0$, there exists a number $L>0$ such that for any z satisfying $L <|z|$, $M<|z|$. In this definition, the infinity $\infty$ does not appear.
{\it The infinity is not a number, but it is an ideal space point.}

The behavior of the space around the point at infinity may be considered by that around the origin by the linear transform $W = 1/z$(\cite{ahlfors}). We thus see that

\begin{equation}
\lim_{z \to \infty} z = \infty,
\end{equation}
however,
\begin{equation}
[z]_{z =\infty} =0,
\end{equation}
by the division by zero. The difference of (2.1) and (2.2) is very important as we see clearly by the function $1/z$ and the behavior at the origin. The limiting value to the origin and the value at the origin are different. For surprising results, we will state the property in the real space as follows:
\begin{equation}
\lim_{x\to +\infty} x =+\infty , \quad \lim_{x\to -\infty} x = -\infty,
\end{equation}
however,
\begin{equation}
[x]_{ +\infty } =0, \quad [x]_{ -\infty } =0.
\end{equation}



\section{Interpretation by analytic geometry}

We write lines by
\begin{equation}
L_k: a_k x + b_k y + c_k = 0, k=1,2.
\end{equation}
The common point is given by, if $a_1 b_2 - a_2 b_1 \ne 0$; that is, the lines are not parallel
\begin{equation}
\left(\frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - a_2 b_1}, \frac{a_2 c_1 - a_1 c_2}{a_1 b_2 - a_2 b_1}\right).
\end{equation}
By the division by zero, we can understand that if $a_1 b_2 - a_2 b_1 = 0$, then the commom point is always given by
\begin{equation}
(0,0),
\end{equation}
even the two lines are the same. This fact shows that the image of the Euclidean space in Section 2 is right.

\section{Remarks}
For a function
\begin{equation}
S(x,y) = a(x^2+y^2) + 2gx + 2fy + c,
\end{equation}
the radius $R$ of the circle $S(x,y) = 0$ is given by
\begin{equation}
R = \sqrt{\frac{g^2 +f^2 -ac}{a^2}}.
\end{equation}
If $a = 0$, then the area $\pi R^2$ of the circle is zero, by the division by zero; that is, the circle is line
(degenerate).

Here, note that by the Theorem, $R^2$ is zero for $a = 0$, but for (4.2) itself
\begin{equation}
R = \frac{-c}{2} \frac{1}{\sqrt{g^2 + f^2}}
\end{equation}
for $a=0$. However, this result will be nonsense, and so, in this case, we should consider $R$
as zero as $ 0^2 =0$. When we apply the division by zero to functions, we can consider, in general, many ways. 

For example,
for the function $z/(z-1)$, when we insert $z=1$ in numerator and denominator, we have
\begin{equation}
\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.
\end{equation}
However, in the sense of the Theorem,
from the identity
\begin{equation}
\frac{z}{z-1} = \frac{1}{z-1} + 1,
\end{equation}
we have
\begin{equation}
\left[\frac{z}{z-1}\right]_{z = 1} = 1.
\end{equation}
By the Theorem, for analytic functions we can give uniquely determined values at isolated singular points, however, the values by means of the Laurent expansion are not always reasonable. We will need to consider many interpretations for reasonable values.

In addition, the center of the circle (4.3) is given by
\begin{equation}
\left( - \frac{g}{a},- \frac{f}{a}\right).
\end{equation}
Therefore, the center of a general line
\begin{equation}
2gx + 2fy + c=0
\end{equation}
may be considered as the origin $(0,0)$, by the division by zero.


We can see similarly the 3 dimensional versions.
\medskip

We consider the functions
\begin{equation}
S_j(x,y) = a_j(x^2+y^2) + 2g_jx + 2f_jy + c_j.
\end{equation}
The distance $d$ of the centers of the circles $S_1(x,y) =0$ and $S_2(x,y) =0$ is given by
\begin{equation}
d^2= \frac{g_1^2 + f_1^2}{a_1^2} - 2 \frac{g_1 g_2 + f_1 f_2}{a_1 a_2} + \frac{g_2^2 + f_2^2}{a_2^2}.
\end{equation}
If $a_1 =0$, then by the division by zero
\begin{equation}
d^2= \frac{g_2^2 + f_2^2}{a_2^2}.
\end{equation}
Then, $S_1(x,y) =0$ is a line and its center is the origin $(0,0)$.


\bigskip

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.

\bibitem{bb}
J. P. Barukcic and I. Barukcic, Anti Aristotle - The Division Of Zero By Zero,
ViXra.org (Friday, June 5, 2015)
© Ilija Barukčić, Jever, Germany. All rights reserved. Friday, June 5, 2015 20:44:59.

\bibitem{bht}
J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

\bibitem{cs}
L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063. 

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
H. Michiwaki, S. Saitoh, and M.Yamada, 
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. 6(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{mst}
H. Michiwaki, S. Saitoh and M. Takagi,
A new concept for the point at infinity and the division by zero z/0=0 
(manuscript).

\bibitem{ra}
T. S. Reis and James A.D.W. Anderson,
Transdifferential and Transintegral Calculus,
Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

\bibitem{ra2}
T. S. Reis and James A.D.W. Anderson,
Transreal Calculus, 
IAENG International J. of Applied Math., 45: IJAM 45 1 06.

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/ 

\bibitem{taka}
S.-E. Takahasi,
{On the identities $100/0=0$ and $ 0/0=0$.}
(note)

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no. 2, 369-380.

\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18): A reality of the division by zero $z/0=0$ by geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? - the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281(2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282(2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.


\end{thebibliography}

\end{document}