2015年7月16日木曜日

division by zero

NEW !
テーマ:
ゼロ除算(ゼロじょざん、division by zero)は、0 で除す割り算のことである。このような除算は除される数を a とするならば、形式上は a⁄0 と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定にまったく依存している話である。少なくとも通常の実数の体系とその算術においては、意味のある式ではない。
コンピュータなど計算機においても、ゼロ除算に対するふるまいは様々である。たとえば浮動小数点数の扱いに関する標準であるIEEE 754では、数とは異なる無限大を表現するものが結果となる。他には、例外が起きてプログラムの中断を引き起こすかもしれないし、例えばナイーブに取尽し法を実行しようとしたなら無限ループに陥るか、なんらかの最大値のようなものが結果となるかもしれない。
計算尺では、対数尺には0に相当する位置が存在しない(無限の彼方である)ため不可能である。
目次 [非表示]
1 算数的解釈
2 初期の試み
3 代数学的解釈
3.1 ゼロ除算に基づく誤謬
4 解析学的解釈
4.1 ゼロ除算と極限
4.2 リーマン球面
5 コンピュータにおけるゼロ除算
6 ポップカルチャー
7 脚注
8 参考文献
9 関連項目
10 外部リンク
算数的解釈[編集]
算数レベルでは、除算は何らかの物の集合をそれぞれ同数になるように分けることで説明される。例えば、10個のリンゴを5人で分ける場合、各人は 10⁄5 = 2個のリンゴを受け取ることになる。同様に、10個のリンゴを1人で分ける場合、各人は 10⁄1 = 10個のリンゴを受け取る。
この考え方を使ってゼロ除算を説明できる。10個のリンゴを0人で分けるとする。各人は何個のリンゴを受け取るだろうか? 10⁄0 を計算しようとしても、元の設問自体が無意味なので無意味となる。この場合、各人が受け取る個数は、0個でも、10個でも、無限個でもない。なぜなら、元々受け取るべき人はいないからである。以上のように算数レベルで考える場合、ゼロ除算は無意味または未定義となる。
ゼロ除算の未定義性を理解する別の方法として、減法の繰り返し適用という考え方がある。すなわち、余りが除数より少なくなるまで除数を繰り返し引くのである。たとえば 13 割る 5 を考えると、13 から 5 は 2 回引くことができ、余りは 3 となる。結果は 13⁄5 = 2 あまり 3 などと記される。ゼロ除算の場合、ゼロを何度引いても余りがゼロより小さくなることはないため、無限に減法を繰り返すだけとなる。
初期の試み[編集]
628年にブラーマグプタが著した『ブラーマ・スプタ・シッダーンタ』では、0 を数として定義し、その演算結果も定義している。しかし、ゼロ除算の説明は間違っていた。彼の定義に従うと代数的不合理が生じることを簡単に証明できる。ブラーマグプタによれば、次の通りである。
「正または負の数をゼロで割ると、分母がゼロの分数となる。ゼロを正または負の数で割ると、ゼロになるか、またはゼロを分子とし有限数を分母とする分数になる。ゼロをゼロで割るとゼロになる」
830年、マハーヴィーラはブラーマグプタの間違いを著書 『ガニタ・サーラ・サングラハ』で以下のように訂正しようとして失敗した。
「数はゼロで割っても変化しない」
バースカラ2世は n⁄0 = ∞ と定義することで問題を解決しようとした。この定義はある意味では正しいが、後述の「ゼロ除算と極限」に示す問題もあり、注意深く扱わないとパラドックスに陥る。このパラドックスは近年まで考察されなかった[1]。
代数学的解釈[編集]
ゼロ除算を数学的に扱う自然な方法は、まず除算を他の算術操作で定義することで得られる。整数、有理数、実数、複素数の一般的算術規則では、ゼロ除算は未定義である。体の公理体系に従う数学的体系では、ゼロ除算は未定義のままとされなければならない。その理由は、除法が乗法の逆演算として定義されているためである。つまり、a⁄b の値は、bx = a という等式を x について解いたときに値が一意に定まる場合のみ存在する。さもなくば、値は未定義のままとされる。
b = 0 のとき、等式 bx = a は 0x = a または単に 0 = a と書き換えられる。つまりこの場合、等式 bx = a は a が 0 でないときには解がなく、a が 0 であれば任意の x が解となりうる。いずれにしても解は一意に定まらず、a⁄b は未定義となる。逆に、体においては a⁄b は b がゼロでないとき常に一意に定まる。
ゼロ除算に基づく誤謬[編集]
ゼロ除算を代数学的記述に用いて、例えば以下のように 1 = 2 のような誤った証明を導くことができる。
以下を前提とする。
0 \times 1 = 0\quad
0 \times 2 = 0\quad
このとき、次が成り立つ。
0 \times 1 = 0 \times 2
両辺をゼロ除算すると、次のようになる。
\textstyle \frac{0}{0}\times 1 = \frac{0}{0}\times 2
これを簡約化すると次のようになる。
1 = 2\quad
この誤謬は、暗黙のうちに 0⁄0 = 1 であるかのように扱っていることから生じる。
上の証明が間違いであることは多くの人が気づくと思われるが、これをもっと巧妙に表現すると間違いを分かりにくくできる。例えば、1 を x と y に置き換え、ゼロを x - y、2 を x + y で置き換える。すると上記の証明は次のようになる。
(x-y)x = x^2-xy = 0
(x-y)(x+y) = x^2-y^2 = 0
したがって、
(x-y)x = (x-y)(x+y)
両辺を x - y で割ると次のようになる。
x = x+y
x = y = 1 を代入すると、次のようになる。
1 = 2
解析学的解釈[編集]
ゼロ除算と極限[編集]

関数 y = \textstyle\frac{1}{x} のグラフ。x が 0 に近づくと、y は無限大に近づく。
直観的に a⁄0 は a⁄b で 正数b を 0 に漸近させたときの極限を考えることで定義されるように見える。
a が正の数の場合、次のようになる。
\lim_{b \to 0^{+}} {a \over b} = {+}\infty
a が負の数の場合、次のようになる。
\lim_{b \to 0^{+}} {a \over b} = {-}\infty
したがって、a が正のとき a⁄0 を +∞、a が負のとき -∞ と定義できるように思われる。しかし、この定義には2つの問題点がある。
第一に、正と負の無限大は実数ではない。実数の範囲内で考えたい場合、この定義には意味がない。この定義を使いたければ、何らかの形で実数を拡張する必要がある。
第二に、右側から極限に漸近するのは恣意的である。左側から漸近して極限を求めた場合、a が正の場合に a⁄0 が -∞ となり、a が負の場合に +∞ となる。これを等式で表すと次のようになる。
+\infty = \frac{1}{0} = \frac{1}{-0} = -\frac{1}{0} = -\infty
このように、+∞ と -∞ が等しいことになってしまい、これではあまり意味がない。これを意味のある拡張とするには、「符号のない無限大」という概念を導入するしかない。
実数に、正負の区別が有る、あるいは無い、無限大が含まれるように拡張したものが拡大実数である。アフィン拡大実数では区別が有り、射影拡大実数では区別が無い(無限遠点)。
物理学においてはブラックホールや宇宙の始まりを考察するさいに質量/体積(密度)の体積が0となる特異点が発生するためゼロ除算による無限大発散の難問が生じている。この場合質量・体積は正であるため正の無限大への発散となる。
直接のゼロ除算以外では、三角関数のtan90°などの計算においても、同様の問題が生じてしまう。
0⁄0 についても、極限
\lim_{(a,b) \to (0,0)} {a \over b}
は存在しないため、うまく定義できない。さらに一般に、x が 0 に漸近すると共に f(x) も g(x) も 0 に漸近するとして、極限
\lim_{x \to 0} {f(x) \over g(x)}
を考えても、これは任意の値に収束する可能性もあるし、収束しない可能性もある。したがって、この手法では 0⁄0 について意味のある定義は得られない。
リーマン球面[編集]
リーマン球面は、複素平面に無限遠点 ∞ の1点を付け加えて得られるもの C ∪ {∞} である。上記実射影直線(射影拡大実数)の複素数版とも考えられる。リーマン球面は複素解析において重要な概念であり、演算は例えば 1/0 = ∞、1/∞ = 0、などとなるが、∞+∞ や 0/0 は定義されない。
コンピュータにおけるゼロ除算[編集]

SpeedCrunchという電卓ソフトでゼロ除算を実行したときの様子。エラーが表示されている。
現在のほとんどのコンピュータでサポートされているIEEE 754 浮動小数点に関する標準規格では、全ての浮動小数点演算を定義している。ゼロ除算も例外ではなく、どういう値になるかが定義されている。IEEE 754の定義によれば、a/0 で a が正の数であれば、除算の結果は正の無限大となり、a が負の数であれば負の無限大となる。そして、a も 0 であった場合、除算結果は NaN(not a number、数でない)となる。IEEE 754 には -0 も定義されているため、0 の代わりに -0 で除算をした場合は、上述の符号が反転する。
整数のゼロ除算は通常、浮動小数点とは別に処理される。というのは整数ではゼロ除算の結果を表す方法がないためである。 多くのプロセッサは整数のゼロ除算を実行しようとすると例外を発生させる。この例外に対する対処がなされていない場合、ゼロ除算を実行しようとしたプログラムは強制終了(アボート)される。これは、ゼロ除算がエラーと解釈されるためで、エラーメッセージが表示されることも多い。
1997年、民生品の応用を研究していたアメリカ海軍はタイコンデロガ級ミサイル巡洋艦ヨークタウンを改造して主機のガスタービンエンジンの制御にマイクロソフト社のソフトウェアを採用したが、試験航行中にデータベースのゼロ除算が発生してソフトウェアが例外を返し、結果として主機が停止、回復するまでカリブ海を2時間半ほど漂流する事態となっている[2]。https://ja.wikipedia.org/wiki/%E3%82%BC%E3%83%AD%E9%99%A4%E7%AE%97


\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 237: A reality of the division by zero $z/0=0$ by geometrical optics}
\author{{\it Institute of Reproducing Kernels}\\

\date{\today}
\maketitle
{\bf Abstract: } In this announcement, we shall state a reality of the division by zero $z/0=0$ by the reflection (geometrical optics) and from this fact we will be able to understand that the division by zero $z/0=0$ is natural in both mathematics and our physical world.
\bigskip
\section{Introduction}
%\label{sect1}
By {\bf a natural extension of the fractions}
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, we, recently, found the surprising result, for any complex number $b$
\begin{equation}
\frac{b}{0}=0,
\end{equation}
incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices, and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers. The result is a very special case for general fractional functions in \cite{cs}. 
The division by zero has a long and mysterious story over the world (see, for example, google site with division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,
Sin-Ei, Takahasi (\cite{taka}) (see also \cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing some full extensions of fractions and by showing the complete characterization for the property (1.2). His result will show that {\bf our mathematics says} that the result (1.2) should be accepted as a natural one:
\bigskip
{\bf Proposition. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ such that
$$
F (b, a)F (c, d)= F (bc, ad)
$$
for all
$$
a, b, c, d \in {\bf C }
$$
and
$$
F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $
$$
F (b, 0) = 0.
$$
}
\medskip
Furthermore, note that Hiroshi Michiwaki with his 6 year old daughter gave the important interpretation of the division by zero $z/0=0$ by the intuitive meaning of the division, {\bf independently of the concept of the product }(see \cite{ann}) . See \cite{ann} for the basic meanings of the division by zero.
We shall state a reality of the division by zero $z/0=0$ by the concept of reflection (geometrical optics). It seems that the common interpretations for the reflections for the center of a circle and the point at infinity are not suitable.
\section{Reflection points}
For simplicity, we shall consider the unit circle ${|z| = 1}$ on the complex $z = x +iy$ plane.
Then, we have the reflection formula
\begin{equation}
z^* = \frac{1}{\overline{z}}
\end{equation}
for any point $z$, as well-known (\cite{ahlfors}). For the reflection point $z^*$, there is no problem for the points
$z \neq 0, \infty$.  As the classical result, the reflection of zero is the point at infinity and conversely, for the point at infinity we have the zero point. The reflection is a one to one and onto mapping between the inside and the outside of the unit circle.
However, we wonder the following common facts:
Are these correspondences suitable?
Does there exist the point at $\infty$, really?
Is the point at infinity corresponding to the zero point? Is the point at $\infty$ reasonable from the practical point of view?
Indeed, where can we find the point at infinity? Of course, we know plesantly the point at infinity
on the Riemann sphere, however on the complex $z$-plane it seems that we can not find the corresponding point. When we approach to the origin on a radial line, it seems that the correspondence reflection points approach to {\it the point at infinity} with the direction (on the radial line).
\section{Interpretation by the division by zero $z/0=0$}
On the concept of the division by zero, there is no the point at infinity $\infty$ as the numbers. For any point $z$ such that $|z| >1$, there exists the unique point $z^*$ by (2.1). Meanwhile, for any point $z$ such that $|z| < 1$ except $z=0$, there exits the unique point $z^*$ by (2.1).
Here, note that for $z=0$, by the division by zero, $z^*=0$. Furthermore, we can see that
\begin{equation}
\lim_{z \to 0}z^* =\infty,
\end{equation}
however, for $z=0$ itself, by the division by zero, we have $z^*=0$. This will mean a strong discontinuity of the function
\begin{equation}
W = \frac{1}{z}
\end{equation}
at the origin $z=0$; that is a typical property of the division by zero. This strong discontinuity may be looked in the above reflection property, physically.
\section{Conclusion}
{\Large \bf Should we exclude the point at infinity, from the numbers?} We were able to look the strong discontinuity of the division by zero in the reflection with respect to circles, physically ( geometrical optics ).
The division by zero gives a one to one and onto mapping of the reflection (2.1) from the whole complex plane onto the whole complex plane.
{\Large \bf The infinity $\infty$ may be considered as in (3.1) as the usual sense of limits,} however, the infinity $\infty$ is not a definite number.
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
S. Koshiba, H. Michiwaki, S. Saitoh and M. Yamane,
An interpretation of the division by zero z/0=0 without the concept of product
(note).
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{mst}
H. Michiwaki, S. Saitoh, and M. Takagi,
A new concept for the point at infinity and the division by zero z/0=0
(note).
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/
\bibitem{taka}
S.-E. Takahasi,
{On the identities $100/0=0$ and $ 0/0=0$}
(note).
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields, Tokyo Journal of Mathematics (in press).
\bibitem{ann}
Announcement 185: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.
\end{thebibliography}
\end{document}

再生核研究所声明236(2015.6.18)ゼロ除算の自明さ、実現と無限遠点の空虚さ

(2015.6.14.07:40 頃、食後の散歩中、突然考えが、全体の構想が閃いたものである。)

2015年3月23日、明治大学における日本数学会講演方針(メモ:公開)の中で、次のように述べた: ゼロ除算の本質的な解明とは、Aristotélēs の世界観、universe は連続である を否定して、 強力な不連続性を universe の自然な現象として受け入れられることである。数学では、その強力な不連続性を自然なものとして説明され、解明されること が求められる。
そこで、上記、突然湧いた考え、内容は、ゼロ除算の理解を格段に進められると直観した。
半径1の原点に中心を持つ、円Cを考える。いま、簡単のために、正のx軸方向の直線を考える。 その時、 点x (0<x<1)の円Cに関する 鏡像 は y = 1/x に映る。この対応を考えよう。xが どんどん 小さくゼロに近づけば、対応する鏡像 yは どんどん大きくなって行くことが分かる。そこで、古典的な複素解析学では、x =0 に対応する鏡像として、極限の点が存在するものとして、無限遠点を考え、 原点の鏡像として 無限遠点を対応させている。 この意味で 1/0 = ∞、と表わされている。 この極限で捉える方法は解析学における基本的な考え方で、アーベルやオイラーもそのように考え、そのような記号を用いていたという。
しかしながら、このような極限の考え方は、適切ではないのではないだろうか。正の無限、どこまで行っても切りはなく、無限遠点など実在しているとは言えないのではないだろうか。これは、原点に対応する鏡像は x>1に存在しないことを示している。ところが、ゼロ除算は 1/0=0 であるから、ゼロの鏡像はゼロであると述べていることになる。実際、鏡像として、原点の鏡像は原点で、我々の世界で、そのように考えるのが妥当であると考えられよう。これは、ゼロ除算の強力な不連続性を幾何学的に実証していると考えられる。
ゼロ以上の数の世界で、ゼロに対応する鏡像y=1/xは存在しないので、仕方なく、神はゼロにゼロを対応させたという、神の意思が感じられるが、それが この世界における実態と合っているということを示しているのではないだろうか。
この説は、伝統ある複素解析学の考えから、鏡像と無限遠点の概念を変える歴史的な大きな意味を有するものと考える。

以 上
付記 下記図を参照:


再生核研究所声明232(2015.5.26)無限大とは何か、無限遠点とは何か。― 驚嘆すべきゼロ除算の結果

まず、ウィキペディアで無限大、無限遠点、立体射影: 語句を確認して置こう:

無限大 :記号∞ (アーベルなどはこれを 1 / 0 のように表記していた)で表す。 大雑把に言えば、いかなる数よりも大きいさまを表すものであるが、より明確な意味付けは文脈により様々である。例えば、どの実数よりも大きな(実数の範疇からはずれた)ある特定の“数”と捉えられることもある(超準解析や集合の基数など)し、ある変量がどの実数よりも大きくなるということを表すのに用いられることもある(極限など)。無限大をある種の数と捉える場合でも、それに適用される計算規則の体系は1つだけではない。実数の拡張としての無限大には ∞ (+∞) と -∞ がある。大小関係を定義できない複素数には無限大の概念はないが、類似の概念として無限遠点を考えることができる。また、計算機上ではたとえば∞+iのような数を扱えるものも多い。
無限遠点 : ユークリッド空間で平行に走る線が、交差するとされる空間外の点あるいは拡張された空間における無限遠の点。平行な直線のクラスごとに1つの無限遠点があるとする場合は射影空間が得られる。この場合、無限遠点の全体は1つの超平面(無限遠直線、無限遠平面 etc.)を構成する。また全体でただ1つの無限遠点があるとする場合は(超)球面が得られる。複素平面に1つの無限遠点 ∞ を追加して得られるリーマン球面は理論上きわめて重要である。無限遠点をつけ加えてえられる射影空間や超球面はいずれもコンパクトになる。
立体射影: 数学的な定義

• 単位球の北極から z = 0 の平面への立体射影を表した断面図。P の像がP ' である。
• 冒頭のように、数学ではステレオ投影の事を写像として立体射影と呼ぶので、この節では立体射影と呼ぶ。 この節では、単位球を北極から赤道を通る平面に投影する場合を扱う。その他の場合はあとの節で扱う。
• 3次元空間 R3 内の単位球面は、x2 + y2 + z2 = 1 と表すことができる。ここで、点 N = (0, 0, 1) を"北極"とし、M は球面の残りの部分とする。平面 z = 0 は球の中心を通る。"赤道"はこの平面と、この球面の交線である。
• M 上のあらゆる点 P に対して、N と P を通る唯一の直線が存在し、その直線が平面z = 0 に一点 P ' で交わる。Pの立体射影による像は、その平面上のその点P ' であると定義する。

無限大とは何だろうか。 図で、xの正方向を例えば考えてみよう。 0、1、2、3、、、などの正の整数を簡単に考えると、 どんな大きな数(正の) n に対しても より大きな数n + 1 が 考えられるから、正の数には 最も大きな数は存在せず、 幾らでも大きな数が存在する。限りなく大きな数が存在することになる。 そうすると無限大とは何だろうか。 普通の意味で数でないことは明らかである。 よく記号∞や記号+∞で表されるが、明確な定義をしないで、それらの演算、2 x∞、∞+∞、∞-∞、∞x∞,∞/∞ 等は考えるべきではない。無限大は普通の数ではない。 無限大は、極限を考えるときに有効な自然な、明確な概念、考えである。 幾らでも大きくなるときに 無限大の記号を用いる、例えばxが どんどん大きくなる時、 x^2 (xの2乗)は 無限大に近づく、無限大である、無限に発散すると表現して、lim_{x \to +\infty} x^2 =+∞ と表す。 記号の意味はxが 限りなく大きくなるとき、x の2乗も限りなく大きくなるという意味である。 無限大は決まった数ではなくて、どんどん限りなく 大きくなっていく 状況 を表している。
さて、図で、 x が正の方向で どんどん大きくなると、 すなわち、図で、P ダッシュが どんどん右方向に進むとき、図の対応で、Pがどんどん、 Nに近づくことが分かるだろう。
x軸全体は 円周の1点Nを除いた部分と、 1対1に対応することが分かる。 すなわち、直線上のどんな点も、円周上の1点が対応し、逆に、円周の1点Nを除いた部分 のどんな点に対しても、直線上の1点が対応する。
面白いことは、正の方向に行っても、負の方向に行っても原点からどんどん遠ざかれば、円周上では Nの1点にきちんと近づいていることである。双方の無限の彼方が、N の1点に近づいていることである。
この状況は、z平面の原点を通る全ての直線についても言えるから、平面全体は球面全体からNを除いた球面に 1対1にちょうど写っていることが分かる。
そこで、平面上のあらゆる方向に行った先が存在するとして 想像上の点 を考え、その点に球面上の点 Nを対応させる。 すると、平面にこの想像上の点を加えた拡張平面は 球面全体 (リーマン球面と称する) と1対1に 対応する。この点が 無限遠点で符号のつかない ∞ で 表す。 このようにして、無限を見ることが、捉えることができたとして、喜びが湧いてくるのではないだろうか。 実際、これが100年を越えて、複素解析学で考えられてきた無限遠点で 美しい理論体系を形作ってきた。
しかしながら、無限遠点は 依然として、数であるとは言えない。人為的に無限遠点に 代数的な構造を定義しても、人為的な感じは免れず、形式的、便宜的なもので、普通の数としては考えられないと言える。
ところが、ゼロ除算の結果は、1 / 0 はゼロであるというのであるから、これは、上記で何を意味するであろうか。基本的な関数 W=1/z の対応は、z =0 以外は1対1、z =0 は W=0 に写り、全平面を全平面に1対1に写している。 ゼロ除算には無限遠点は存在せず、 上記 立体射影で、 Nの点が突然、0 に対応していることを示している。 平面上で原点から、どんどん遠ざかれば、 どんどんNに近づくが、ちょうどN に対応する点では、 突然、0 である。
この現象こそ、ゼロ除算の新規な神秘性である。
上記引用で、記号∞ (アーベルなどはこれを 1 / 0 のように表記していた)、オイラーもゼロ除算は 極限の概念を用いて、無限と理解していたとして、天才 オイラーの間違いとして指摘されている。
ゼロ除算は、極限の概念を用いて得られるのではなくて、純粋数学の理論の帰結として得られた結果であり、世の不連続性の現象を表しているとして新規な現象の研究を進めている。
ここで、無限大について、空間的に考えたが、個数の概念で、無限とは概念が異なることに注意して置きたい。 10個、100個、無限個という場合の無限は異なる考えである。自然数1,2,3、、、等は無限個存在すると表現する。驚嘆すべきことは、無限個における無限には、幾らでも大きな無限が存在することである。 例えば、自然数の無限は最も小さな無限で、1cm の長さの線分にも、1mの長さの線分にも同数の点(数、実数)が存在して、自然数全体よりは 大きな無限である。点の長さはゼロであるが、点の集まりである1cmの線分には長さがあるのは、線分には点の個数が、それこそ目もくらむほどの多くの点があり、長さゼロの点をそれほど沢山集めると,正の長さが出てくるほどの無限である。


以 上


世界中で、ゼロ除算は 不可能 か 
可能とすれば ∞  だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。

再生核研究所声明199(2015.1.15) 世界の数学界のおかしな間違い、世界の初等教育から学術書まで間違っていると言える ― ゼロ除算100/0=0,0/0=0

ゼロ除算は 西暦628年インドでゼロが文献に記録されて以来、問題とされてきた。ゼロ除算とは、ゼロで割ることを考えることである。これは数学の基本である、四則演算、加法、減法、乗法、除法において、除法以外は何時でも自由にできるのに、除法の場合だけ、ゼロで割ることができないという理由で、さらに物理法則を表す多くの公式にゼロ除算が自然に現れていることもあって、世界各地で、今でも絶えず、問題にされていると考えられる。― 小学生でも どうしてゼロで割れないのかと毎年、いろいろな教室で問われ続いているのではないだろうか.

これについては、近代数学が確立された以後でも、何百年を越えて 永い間の定説として、ゼロ除算は 不可能であり、ゼロで割ってはいけないことは、初等教育から、中等、高校、大学そして学術界、すなわち、世界の全ての文献と理解はそうなっている。変えることのできない不変的な法則のように理解されていると考えられる。

しかるに2014年2月2日 ゼロ除算は、可能であり、ゼロで割ればゼロであることが、偶然発見された。その後の経過、背景や意味付け等を纏めてきた:

再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8) 知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
再生核研究所声明163(2014.6.17)ゼロで割る(零除算)- 堪らなく楽しい数学、探そう零除算 ― 愛好サークルの提案
再生核研究所声明166(2014.6.20)ゼロで割る(ゼロ除算)から学ぶ 世界観
再生核研究所声明171(2014.7.30)掛け算の意味と割り算の意味 ― ゼロ除算100/0=0は自明である?
再生核研究所声明176(2014.8.9) ゼロ除算について、数学教育の変更を提案する
Announcement 179 (2014.8.25): Division by zero is clear as z/0=0 and it is fundamental in mathematics
Announcement 185 : The importance of the division by zero $z/0=0$
再生核研究所声明188(2014.12.15)ゼロで割る(ゼロ除算)から観えてきた世界
再生核研究所声明190(2014.12.24)
再生核研究所からの贈り物 ― ゼロ除算100/0=0, 0/0=0
夜明け、新世界、再生核研究所 年頭声明
― 再生核研究所声明193(2015.1.1)― 
再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議
再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について
再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について

ところが、気づいてみると、ゼロ除算は当たり前なのに、数学者たちが勝手に、割り算は掛け算の逆と思い込み、ゼロ除算は不可能であると 絶対的な真理であるかのように 烙印を押して、世界の人々も盲信してきた。それで、物理学者が そのために基本的な公式における曖昧さに困ってきた事情は ニュートンの万有引力の法則にさえ見られる。
さらに、誠に奇妙なことには、除算はその言葉が表すように、掛算とは無関係に考えられ、日本ばかりではなく西欧でも中世から除算は引き算の繰り返しで計算されてきた、古い、永い伝統がある。その考え方から、ゼロ除算は自明であると道脇裕氏と道脇愛羽さん6歳が(四則演算を学習して間もないときに)理解を示した ― ゼロ除算は除算の固有の意味から自明であり、ゼロで割ればゼロであるは数学的な真実であると言える(声明194)。数学、物理、文化への影響も甚大であると考えられる。
数学者は 数学の自由な精神で 好きなことで、考えられることは何でも考え、不可能を可能にし、分からないことを究め、真智を求めるのが 数学者の精神である。非ユークリッド幾何学の出現で 絶対は変わり得ることを学び、いろいろな考え方があることを学んできたはずである。そのような観点から ゼロ除算の解明の遅れは 奇妙な歴史的な事件である と言えるのではないだろうか。
これは、数学を超えた、真実であり、ゼロ除算は不可能であるとの 世の理解は間違っている と言える。そこで、真実を世界に広めて、人類の歴史を進化させるべきであると考える。特に声明176と声明185を参照。ゼロ除算は 堪らなく楽しい 新世界 を拓いていると考える。
以 上

1+0=1 1ー0=0 1×0=0  では、1/0・・・・・・・・・幾つでしょうか。
0???  本当に大丈夫ですか・・・・・0×0=1で矛盾になりませんか・・・・


ゼロ除算は、不可能であると誰が最初に言ったのでしょうか・・・・

7歳の少女が、当たり前であると言っているゼロ除算を 多くの大学教授が、信じられない結果と言っているのは、まことに奇妙な事件と言えるのではないでしょうか。

割り算を掛け算の逆だと定義した人は、誰でしょう???

世界中で、ゼロ除算は 不可能 か 
可能とすれば ∞  だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。

小学校以上で、最も知られている数学の結果は何でしょうか・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
https://www.pinterest.com/pin/234468724326618408/



無限遠点は存在するが、無限大という数は存在しない・・・・

加(+)・減(-)・乗(×)・除(÷) 除法(じょほう、英: division)とは、乗法の逆演算・・・・間違いの元 乗(×)は、加(+) 除(÷)は、減(-)
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849/a37209195?sort=1&fr=chie_my_notice_canso









0 件のコメント:

コメントを投稿