2015年10月15日木曜日

小6少女が特許取得 缶を自動分別するごみ箱 夏休みの自由研究きっかけに

小6少女が特許取得 缶を自動分別するごみ箱 夏休みの自由研究きっかけに



開発したごみ箱(右)で特許を取得した神谷明日香さん=愛知県安城市
 愛知県安城市の丈山小学校6年、神谷(かみや)明日香さん(12)が、磁石の力を利用してスチール缶とアルミ缶を自動的に分別するごみ箱を開発し、特許を取得した。公益社団法人発明協会(東京)によると、小学生の特許取得は非常に珍しい。神谷さんは「特許が取れるなんてびっくりした」と喜んでいる。

 ごみ箱はプラスチック板などを組み合わせた直方体で高さ約90センチ。内部に仕切りがあり、スチール缶入れとアルミ缶入れに分かれている。

 投入口はアルミ缶入れの真上に設けた。アルミ缶はそのまま真下に落ちるが、スチール缶は磁石の力で反対側に落ちる仕組み。全てホームセンターで手に入る安価なもので作った。

 神谷さんがごみ箱を作ったきっかけは、昨年の夏休みの課題として出された自由研究。祖父がスーパーを営んでおり、自動販売機のごみ箱のスチール缶とアルミ缶を仕分けするのを見て着想を得た。

 父の豊明さん(40)と協力して作製に取り掛かり、約3週間かけて完成した。磁石は投入口の下にぶら下げた小さなプラスチック板に張り付けたが、当初はスチール缶が磁石にくっつき、うまく仕分けられなかった。試行錯誤を重ね板の大きさや形を調整した。http://www.sankei.com/west/news/151014/wst1510140029-n1.html

再生核研究所声明152(2014.3.21) 研究活動に現れた注目すべき現象、研究の現場

今回、100/0=0,0/0=0の発見と研究活動で いわば、研究のライブの状況が明瞭に現われたので、研究の現場の状況として纏めてみたい。多くはメールや文書で 時刻入れで 文書が保管されている。一般的に注目すべきことはゴシック体で記そう。
まず、発見現場であるが、偶然に 印刷された原稿を見て発見したと言うことである。思いがけないことに、気づいたということである。言われてみれば、当たり前のことで、気付かない方がおかしく、馬鹿みたいなことになるだろう。たわいもないものの類である。しかし、結果が尋常ではないので、大事だと 説明されても、原稿を見せても そんなものは駄目、全然価値が無いと結構多くの人が大きな批判を寄せてきたのは 大いに注目に値する。わざわざ複数の外国からメールがいわば上司にきて、批判して、研究内容について意見を求めるメールさえ するのを禁じられた程である。予断と偏見によるもの、が大部分であると判断できる。それから 価値観に本質的な違いがあること を露わに実感した。原稿を見て、これは 面白いと捉えて 研究を発展させて素晴しい論文を書かれた者がいる一方 そんなの 駄目だ で、ただ批判して傍観している者。これは 研究者の素養として、能力として極めて大きな問題ではないだろうか。研究内容の、良い、悪いが判断できない、興味、関心が無い。愛が無ければ見えない、進まないは 基本では? 研究において、最も大事なのは、愛が有るか、関心が有るか、価値を認められるか、好奇心が有るかではないだろうか。 これらが無ければ、幾ら宝のようなものに出会っても、探し出せないのではないだろうか。あることに 高い価値を見出し、情熱的に追及して行く精神は、研究者としての素養として大事ではないだろうか。良いか、悪いか評価できなければ、判断出来なければ、唯 夢中で何かの延長を 他を意識して進めるだけになってしまう。良いものを 良いと評価できる能力は、理解力、解決力、創造力などと共に大事な能力ではないだろうか。場合によっては、人格の高潔さにも依存する要素も多い。意図的に無視するは 世に多いからである。
それから、新しい考え、発想が無意識の内に湧いてくる ものであるという、事実である。目を覚ましたら解けていた、新しい考えで 突然目を覚ましたと繰り返して書いてきた。それから、それらは精神状態によるのであるが、コーヒー、茶、特にジャスミン茶で 大いに興奮して、どんどん考えが湧いて来るのを実感した。結構、そのようなものの影響も無視できない。
それから研究活動で大事な要素は 積極性である。今回、多くの人が 研究に参加されたが、意外な人が 意外な才能を発揮して、意外な視点を 指摘され、発展させてくれたという顕著な事実である。全然興味を懐かないような人でも 話すと興味を示し、大きな貢献をしてくれた。現在のように忙しく、論文を送られてきても読む暇も、関わる余裕も無いは 世に多い現象であるが、直接話すと 本質を理解されて、興味を懐くは 世に多い。直接交流の重要性を指摘しておきたい。メールなどでも、交信からいろいろな刺激を受け、考えが湧く素に成るのは多い、精神が鼓舞される場面も多い。それから、凄い発見を事実上していても、理解が難しい、あるいは批判を恐れて 追求を諦めてしまう、主張を避けて諦めてしまうのは 世に多いのではないかとも感じられる。良いものを発見しても、認められるまで、努力するのは そう簡単なことではないように感じられる。
最後に 研究の最も大事な心を 2014.3.11ブログに書いた記事を編集して記して置こう:

特異点解明の歩み100/0=0,0/0=0:関係者: 独断と偏見、人類の知能

ふと思い浮かんだ: 天才少年の質問(再生核研究所声明 9: 天才教育の必要性を訴える ):

0.999…. = 1 の意味は、何か

当時8歳の少年でした。私は だれをも納得させる明快な解答を与えたが、相当な、国内外の相当な数学者に尋ねたが これまで誰からも満足する解答を得なかった。これは 知識で、学んでいて 理解が薄っぺらなことを言っているのではないだろうか。少しも、真智を求めては来なかった:
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.(もっとも何でも は 究められない)
それ故に、ゼロで割る考えが 思い浮かばなかったのでは。人類の知能は その程度である。真智を求めている者は 世に稀であり、多くは断片的な世界に閉じこもり、埋没し、自己さえ見失っている。また、日常生活に埋没していると言える。

以 上

再生核研究所声明196(2015.1.4)ゼロ除算に於ける山根の解釈100= 0x0について

ゼロ除算 100/0=0 は 説明も不要で、記号を含めて 数学的に既に確定していると考える。 もちろん、そこでは100/0 の意味をきちんと捉え、確定させる必要がある。 100/0 は 割り算の自然な拡張として ある意味で定義されたが、 その正確な意味は微妙であり、いろいろな性質を調べることによって その意味を追求して行くことになる:

ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
100/0=0 というのであるから、それは 100= 0 x0 というような意味を有するであろうかと 問うことは可能である。 もちろん、x を普通の掛け算とすると0x0 =0 となり、矛盾である。ところが山根正巳氏によって発見された解釈、物理的な解釈は絶妙に楽しく、深い喜びの情念を与えるのではないだろうか:

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

等速で一直線上 異なる方向から、同じ一定の速さvで、同じ質量mの物体が近づいているとする。 その時、2つの物体の運動エネルギーの積は

\begin{equation}
\frac{1}{2}m{ v}^2 \times \frac{1}{2}m{(- v)^2} =E^2.
\end{equation}
で 一定E^2である。
ところが2つの物体が衝突して止まれば、vは ともにゼロになり、衝突の後では見かけ上
\begin{equation}
0 \times 0 =E^2.
\end{equation}
となるのではないだろうか。 その時はE^2 は 熱エネルギーなどに変わって、エネルギー保存の法則は成り立つが、ある意味での掛け算が、ゼロ掛けるゼロになっている現象を表していると考えられる。 ゼロ除算はこのような変化、不連続性を捉える数学になっているのではないだろうか。 意味深長な現象を記述していると考える。
運動エネルギー、物質は数式上から消えて、別のものに変化した。 逆に考えると、形式上ないものが変化して、物とエネルギーが現れる。これはビッグバンの現象を裏付けているように感じられる。 無から有が出てきたのではなくて、何かの大きな変化をビッグバンは示しているのではないだろうか?
以 上


再生核研究所声明195(2015.1.3)ゼロ除算に於ける高橋の一意性定理について

ゼロで割る、ゼロ除算は 割り算が掛け算の逆と考えれば、不可能である事が簡単に証明されてしまう。しかるにゼロ除算はある自然な考え方でゼロになるということが発見されるや否や、ゼロ除算は除算の固有の意味から自明であるということと その一意性があっという間に証明されてしまった。ここでは創造性の実態、不思議な面に触れて、創造性の奇妙な観点をしっかり捉えて置きたい。― 背景の解説は 次を参照:

ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
道脇裕・愛羽 父・娘 氏たちの自明であるという解釈は 再生核研究所声明194で纏めたので、ここでは高橋の一意性定理を確認して置きたい。

まず、山形大学の高橋眞映 名誉教授によって与えられた 定理とその完全な証明を述べよう:

定理 Rを実数全体として、 Fを R x R からRへの写像(2変数関数)で、全ての実数 a、b、c、d に対して

F (a, b)F (c, d)= F (ac, bd) 

および b がゼロでない限り、

F (a, b) = a/b

とする。 このとき、 F (a, 0) = 0 が導かれる。

証明 実際、 F (a, 0) = F (a, 0)1 = F (a, 0)(2/2) = F (a, 0)F (2, 2) = F (ax 2, 0 x 2) = F (2a, 0) = F (2, 1)F (a, 0) = 2F (a, 0).。 よって F (a, 0) = 2F (a, 0)、ゆえに F (a, 0)=0。

この定理で、F (a, 0) を a/0 と定義するのは自然であり、実際、 そう定義する。 ここは大事な論点で、チコノフ正則化法や道脇方式で既にa/0が定義されていれば、もちろん、定理ではF (a, 0) =a/0 が導かれたとなる。

定理は 分数の積の性質 (a/b)(c/d) = (ac/bd) を持つもので、分数をゼロ除算に(分母がゼロの場合に)拡張する、如何なる拡張も ゼロに限る a/0=0 ことを示している。― これは、拡張分数の基本的な積の性質(a/b)(c/d) = (ac/bd)だけを仮定(要請)すると、ゼロ除算は ゼロに限る a/0=0ことを示しているので、その意義は 決定的であると考えられる。 この定理は千年以上の歴史を持つゼロ除算に 決定的な解を与えていると考えられる。
チコノフ正則化法や一般逆の方法では、一つの自然な考え方で導かれることを示しているだけで、いろいろな拡張の可能性を排除できない。道脇方式も同様である。 一意性定理とは、そもそも何、何で定まるとは、その、何、何が定める性質の本質を捉えていて、導いた性質の本質、そのものであると言える。高橋眞映教授の定理は 証明も簡潔、定理の意義は絶大であり、このような素晴らしい定理には、かつて会ったことがない。数学史上の異色の基本定理ではないだろうか。
ゼロ除算は、拡張分数が 直接、自明であるが、積の公式が成り立つと、積極的に性質を導いていることにも注目したい。(ゼロ除算は 新しい数学であるから、そのようなことまで、定義に従って検討する必要がある。)
ゼロ除算は 千年以上も、不可能であるという烙印のもとで, 世界史上でも人類は囚われていたことを述べていると考えられる。世界史の盲点であったと言えるのではないだろうか。 ある時代からの 未来人は 人類が 愚かな争いを続けていた事と同じように、人類の愚かさの象徴 と記録するだろう。 人は、我々の時代で、夜明けを迎えたいとは 志向しないであろうか。
数学では、加、減、そして、積は 何時でも自由にできた、しかしながら、ゼロで割れないという、例外が除法には存在したが、ゼロ除算の簡潔な導入によって、例外なく除算もできるという、例外のない美しい世界が実現できたと言える。
高橋の一意性定理だけで、数学はゼロ除算100/0=0,0/0=0を確定せしめていると言えると考える。 実はこの大事な定理自身は 論文にもそのまま記述されたにも関わらず、共著者名に高橋の名前が高橋教授の希望で載っていない:

M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

ところが、 高橋教授がゼロ除算の一意性を証明したと 当時 アヴェイロ大学にポスドクで来ていた、イタリアのM. Dalla Riva博士に伝えたところ、そんな馬鹿な、反例を作ると猛然と挑戦したのであるが次々と失敗を続けていたが、帰る頃、驚いて高橋の結果は正しいと独自に定理を発見、証明した。― そこで、いろいろ経緯があって、共著で論文を書こうと提案していたところ、ゼロ除算そのものの研究の意味がないとして、論文と研究には参加せず、彼の結果は、齋藤のものとして良いとなった。彼らのあるグループ間では ゼロ除算は意味がないということで、意見が一致したというのである。これは数学が正しくても意味が無いという、見解の人たちが存在するという事実を述べている。アヴェイロ大学でもそのような意見であったので、アヴェイロ大学では、ゼロ除算は研究できない状況になっていた。それらの思想、感覚は、アリストテレスの世界観が宗教のように深くしみわたっていて、universe は不連続なはずがないという事である。ゼロ除算における強力な不連続性は受け入れられない、ゼロ除算はまるで、恐ろしい魔物をみるように 議論しても、発表してもならないと 数学教室の責任者たちに念を押された事実を 真実の記録として、書き留めて置きたい。
独立に証明された、Riva氏と高橋教授は、自分たちの定理の重要性を認識していなかったように感じられる。 他方、齋藤は、最初から今もなお その素晴らしさに驚嘆して感銘させられている。
以 上



再生核研究所声明194(2015.1.2)大きなイプシロン(無限小)、創造性の不思議

ゼロで割る、ゼロ除算は 割り算を掛け算の逆と考えれば、不可能である事が簡単に証明されてしまう。しかるにゼロ除算は 自然な考え方でゼロになるということが発見されるや否や、ゼロ除算は除算の固有の意味から自明であるということと その一意性があっという間に証明されてしまった。ここでは創造性の実態、不思議な面に触れて、創造性の奇妙な観点をしっかり捉えて置きたい。― 背景の解説は 次を参照:

ゼロ除算の楽しい、易しい解説を次で行っている:
数学基礎学力研究会のホームページ
URLは
http://www.mirun.sctv.jp/~suugaku
道脇裕・愛羽 父・娘 氏たちの意見は 割り算を除算の固有の意味から考えて、自明であると結論づけたものであるが、この文脈を追記すると:
そこで、100/0 を上記の精神で考えてみよう。 まず、

100 - 0 = 100,

であるが、0を引いても 100は減少しないから、何も引いたことにはならず、引いた回数(商)は、ゼロと解釈するのが自然ではないだろうか (ここはもちろん数学的に厳格に そう定義できる)。ゼロで割るとは、100を分けないこと、よって、分けられた数もない、ゼロであると考えられる。 この意味で、分数を定義すれば、分数の意味で、100割るゼロはゼロ、すなわち、100/0=0である。
さらに、
ところで、 除算を引き算の繰り返しで計算する方法自身は、除算の有効な計算法がなかったので、実際は日本ばかりではなく、中世ヨーロッパでも計算は引き算の繰り返しで計算していたばかりか、現在でも計算機で計算する方法になっている(吉田洋一;零の発見、岩波新書、34-43)。
さらに、道脇裕氏が、2014.12.14日付け文書で、上記除算の意味を複素数の場合にも拡張して ゼロ除算z/0=0を導いているのは、新しい結果であると考えられる。
吉田洋一氏は、上記著書で、ゼロ除算の方法を詳しく書かれているにも関わらず、ゼロ除算はゼロであるとの 結果に至っていない。道脇氏が見破ったセロ除算が出ていない。 吉田氏が書かれているように、中世ヨーロッパ、アジアでも、計算機内の計算法でも広範に、使われている方法の 小さな、小さな発想が出ていない。世界は広く、四則演算を習い、使用している人は それこそ膨大な人口なのに 皆道脇氏の発想が出ていないということは 何を意味するであろうか。 もちろん、数学や物理学の天才たちを回想しても 驚くべきことである。 しかも, 物理学には、ゼロ除算が自然に現れる公式が沢山存在して、ゼロ除算は 物理学の 不明な、曖昧な点であったという事実さえ存在していた。世間でもどうしてゼロで割れないかの疑問は 繰り返し問われてきていた、問われている。
この小さな、小さな発想の1歩が出なかった理由は、除算は乗算の逆であって、ゼロ除算は不可能であるという、数学の定説が ゆり動く事がなかったという、厳然とした事実ではないだろうか? 数学的に不可能性であることが証明されていることは、あたかも 絶対的な真理のように響いてきたのではないだろうか。― しかしながら、人類は非ユークリッド幾何学の出現で、数学的な真実は変わりうることを学んでいるはずである。 実際、平行線が無数に存在したり、全然、存在しない幾何学が現れ、現在それらが活用されている。
道脇愛羽さん(当時6歳)は 四則演算の定義、基本だけを知っていて、自由な発想の持ち主であるがゆえに、得られた感覚とも言えるが、無限が好きだとか、一般角の三等分を考えるなど、相当な数覚の持ち主のように感じられる。道脇裕氏は、自由人で、相当な整数論を独力で展開するなど多彩な才能の持ち主であるが、除算の理解にも深く、複素数でも除算の考えができるなど、全く新しい結果を得ていると考える。数学の定説など ものともしない、世界を観ているのが良く分かる。それらの故にこの偉大な1歩を踏み出すことができたと考えられる。
この1歩は偉大であり、小学校以上の割り算の考えを改め、ゼロ除算を 世界の常識にすべきであると考える。
我々は、この発見の契機から、人間の創造性について沢山の事を学べるのではないだろうか。

以 上










ガロア ゼロ除算

0 件のコメント:

コメントを投稿