2016年7月11日月曜日

8月京都で開催 世界考古学会議 過去最大の規模「市民と共有」

8月京都で開催 世界考古学会議 過去最大の規模「市民と共有」

毎日新聞2016年6月15日 大阪朝刊

カルチャー
めっちゃ関西
芸術・文化


非西欧・アラビア語圏で初/参加しやすい1日券も
「戦争」「災害」「アート」−−15テーマ設定
 考古学者が集まる学会としては最大の世界考古学会議(WAC)の第8回世界大会が8月28日〜9月2日、京都市で開かれる。発表申し込みが5月末で締め切られ、過去最大規模になることが確実となった。大会実行委員会は「世界の考古学を考古学者と市民が共有する大会にしたい」と、市民参加のイベントを企画している。【専門編集委員・佐々木泰造】

 WACはちょうど30年前の1986年に創設された。英国サウサンプトンで開かれる予定だった第11回国際先史学・原史学会議に、当時、人種隔離政策を進めていた南アフリカとナミビアからの参加を認めるかどうかの議論が紛糾したのがきっかけだった。

 第1回のサウサンプトンに続いて、原則として4年ごとにバルキシメト(ベネズエラ)、ニューデリー(インド)、ケープタウン(南アフリカ)、ワシントン(米国)、ダブリン(アイルランド)、死海沿岸(ヨルダン)で世界大会が開かれてきた。

 東アジアでは、世界大会の合間に随時開かれる小規模な中間会議が2006年に大阪で開かれたのが初めてで、京都大会は非西欧語・アラビア語圏で開かれる初めての世界大会でもある。

 WACでは常に、考古学者が政治や社会とどうかかわるかが問われている。個別の調査報告よりも、考古学のあり方そのものを問い直す議論が中心だ。そのため性、年齢、居住地域、民族の別を問わず、発言の平等を保証している。

 03年、イラク戦争の開始直後に米ワシントンで開かれた第5回大会では「戦争と考古学」がメインテーマになったが、中東などの考古学者はビザを拒否されて参加できず、発言の機会を奪われた。それなら、皆が中東に行こうと、09年にパレスチナ自治区で中間会議が開かれ、隣の死海沿岸が第7回大会(13年)の会場に選ばれた。

 世界大会の開催は、低所得国や先住民が参加しやすいよう、開催国が旅費などの費用を援助することが条件だ。08年の第6回大会は当初、ジャマイカでの開催が予定されていたが、参加援助ができないため、ダブリンに変更された。

 第8回の京都大会は初めて投票で開催地が決められた。第7回大会で京都、カルガリー(カナダ)、プラハ(チェコ)、ナイロビ(ケニア)が立候補し、京都が出席委員67人のうち49票を獲得して開催が決まった。

 同時に第6代の会長にアジアから初めて溝口孝司・九州大学教授が選ばれた。4人の役員のうちもう一人、書記は松田陽(あきら)・東京大学准教授(当時は英イーストアングリア大学講師)が務めることになった。財政面を含め、日本の大会運営能力には大きな期待がかかっている。

 京都大会は同志社、立命館、京都の3大学を核とする実行委員会(委員長、都出比呂志・大阪大学名誉教授)が主催する。関西を中心に70人前後の考古学、埋蔵文化財関係者が集まり、準備を進めている。

 主会場の同志社大学では、15のテーマについて、180のセッション(2時間枠の分科会)で発表・討論がある。「開発」「戦争」「科学」「先住民」「倫理」などこれまでWACが力を入れてきたテーマだけでなく、京都大会を特徴づけるテーマもある。

 その一つ「災害」のテーマでは、津波と原発事故に見舞われた福島を例に、自然災害と人災からどのようにして文化遺産を守るかについて話し合うセッションなど6のセッションがある。

 「アート」のテーマでは、主会場で開かれる11のセッションで議論するだけでなく、京都文化博物館や建仁寺塔頭(たっちゅう)の両足院、ギャラリーなど市内のサテライト会場で、市民も参加してアートと考古学について考える展覧会などが開かれる。

 WACは考古学に関心があれば誰でも入会でき、大会には会員でなくても参加できる。京都大会では、低所得国からの参加費を低く抑えるため、日本など先進国の参加費が非会員で6万円と高くなっているが、研究費が使えない市民、学生も参加しやすいよう1日券(1万円)も設けられた。

 セッションでの発表は、約80の国・地域の約1200人から申し込みがあった。うち290人が日本人で、第7回の約10倍に膨らんだ。直前まで受け付ける参加登録は5月末現在、1830人で、最終的には2000人を超え、第6回(74カ国・地域、約1800人)、第7回(82カ国・地域、約1000人)を大きく上回る見通しだ。

 また、世界と日本の考古学について広く市民に知ってもらおうと、公開講演会が開かれる。8月28日16時「日本考古学100年 京都で生まれて」▽29日19時「世界文化遺産と現代都市」▽30日19時「災害・防災と考古学」。いずれも同志社大学室町キャンパス。英語の講演は同時通訳付き。7月中旬に公式サイト(wac8.org)などで詳細を発表し、参加者募集を始める予定だ。http://mainichi.jp/articles/20160614/ddn/013/040/051000c


興味があります:行ってみたい

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 300: New challenges on the division by zero z/0=0\\
(2016.05.22)}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\

%\date{\today}
\maketitle
{\bf Abstract: } In this announcement, for its importance we would like to state the
situation on the division by zero and propose basic new challenges.

\bigskip
\section{Introduction}
%\label{sect1}
By a {\bf natural extension} of the fractions
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$
\begin{equation}
\frac{b}{0}=0,
\end{equation}
incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers.

The division by zero has a long and mysterious story over the world (see, for example, Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,
Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

\bigskip

{\bf Proposition 1. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ satisfying
$$
F (b, a)F (c, d)= F (bc, ad)
$$
for all
$$
a, b, c, d \in {\bf C }
$$
and
$$
F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $
$$
F (b, 0) = 0.
$$
}

Note that the complete proof of this proposition is simply given by 2 or 3 lines.

\medskip
We thus should consider, for any complex number $b$, as (1.2);
that is, for the mapping
\begin{equation}
w = \frac{1}{z},
\end{equation}
the image of $z=0$ is $w=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

However, the division by zero (1.2) is now clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

\medskip
1) by the generalization of the fractions by the Tikhonov regularization or by the Moore-Penrose generalized inverse,

\medskip
2) by the intuitive meaning of the fractions (division) by H. Michiwaki,

\medskip
3) by the unique extension of the fractions by S. Takahasi, as in the above,

\medskip
4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from ${\bf C}$ onto ${\bf C}$,

\medskip
and

\medskip

5) by considering the values of functions with the mean values of functions.
\medskip

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

\medskip

\medskip
A) a field structure containing the division by zero --- the Yamada field ${\bf Y}$,

\medskip
B) by the gradient of the $y$ axis on the $(x,y)$ plane --- $\tan \frac{\pi}{2} =0$,
\medskip

C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane --- the reflection point of zero is zero,
\medskip

and
\medskip

D) by considering rotation of a right circular cone having some very interesting
phenomenon from some practical and physical problem.

\medskip

In (\cite{mos}), many division by zero results in Euclidean spaces are given and the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.

\medskip

See J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their paper.

Meanwhile, J. P. Barukcic and I. Barukcic (\cite{bb}) discussed recently the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.

Furthermore, T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero $0/0$.

Meanwhile, we should refer to up-to-date information:

{\it Riemann Hypothesis Addendum - Breakthrough

Kurt Arbenz
https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum - Breakthrough.}

\medskip

Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don't believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

For our ideas on the division by zero, see the survey style announcements 179,185,237,246,247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252,ann293}).

\section{On mathematics}
Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1. Note its very general assumptions and many fundamental evidences in our world in (\cite{kmsy,msy,mos}). The results will give great impacts on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and physical problems. See our announcements for the details.

The mysterious history of the division by zero over one thousand years is a great shame of mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.

We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful, and will give great impacts to our basic ideas on the universe.

\section{Albert Einstein's biggest blunder}
The division by zero is directly related to the Einstein's theory and various
physical problems
containing the division by zero. Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.

\section{Computer systems}
The above Professors listed are wishing the contributions in order to avoid the zero division trouble in computers. Now, we should arrange new computer systems in order not to meet the division by zero trouble in computer systems.

\section{General ideas on the universe}
The division by zero may be related to religion, philosophy and the ideas on the universe, and it will creat a new world. Look the new world.

\bigskip

We are standing on a new generation and in front of the new world, as in the discovery of the Americas.

\bigskip

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{bb}
J. P. Barukcic and I. Barukcic, Anti Aristotle—The Division of Zero by Zero. Journal of Applied Mathematics and Physics, {\bf 4}(2016), 749-761.
doi: 10.4236/jamp.2016.44085.

\bibitem{bht}
J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

\bibitem{cs}
L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{ms}
T. Matsuura and S. Saitoh,
Matrices and division by zero $z/0=0$,
Linear Algebra \& Matrix Theory (ALAMT)(to appear).

\bibitem{msy}
H. Michiwaki, S. Saitoh, and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{mos}
H. Michiwaki, H. Okumura, and S. Saitoh,
Division by Zero $z/0 = 0$ in Euclidean Spaces.
International Journal of Mathematics and Computation
(in press).

\bibitem{ra}
T. S. Reis and J.A.D.W. Anderson,
Transdifferential and Transintegral Calculus,
Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

\bibitem{ra2}
T. S. Reis and J.A.D.W. Anderson,
Transreal Calculus,
IAENG International J. of Applied Math., {\bf 45}(2015): IJAM 45 1 06.

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no. 2, 369-380.

\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18): A reality of the division by zero $z/0=0$ by geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? - the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281(2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282(2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.

\bibitem{ann293}
Announcement 293(2016.3.27): Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.

\end{thebibliography}

\end{document}

0 件のコメント:

コメントを投稿