実話をもとに天才数学者2人の友情描く「奇蹟がくれた数式」公開決定
2016年7月13日 10:00 115
「奇蹟がくれた数式」
「スラムドッグ$ミリオネア」のデヴ・パテルと「リスボンに誘われて」のジェレミー・アイアンズが共演した「The Man Who Knew Infinity」が、「奇蹟がくれた数式」の邦題で10月22日に公開されることが決定した。
「奇蹟がくれた数式」ポスタービジュアル
「奇蹟がくれた数式」ポスタービジュアル
本作は、インドの事務員ラマヌジャンと英国人数学者ハーディという2人の天才に関する実話を描いたもの。ケンブリッジ大学で働くハーディのもとに、驚くべき発見が記された1通の手紙が届いたことから物語が展開していく。“アインシュタイン並みの天才”と称されるラマヌジャンをパテルが、ラマヌジャンの才能を見出したハーディをアイアンズが演じる。
「奇蹟がくれた数式」は東京・角川シネマ有楽町、Bunkamuraル・シネマほかにて全国公開。http://natalie.mu/eiga/news/194174
Ramanujan says that answer for 0/0 is infinity. But I'm not sure it's ...
https://www.quora.com/Ramanujan-says-that-answer-for-0-0-is-infi...
このページを訳す
You can see from the other answers, that from the concept of limits, 0/0 can approach any value, even infinity. ... So, let me take a system where division by zero is actually defined, that is, you can multiply or divide both sides of an equation by ...
https://www.quora.com/Ramanujan-says-that-answer-for-0-0-is-infinity-But-Im-not-sure-its-correct-Can-anyone-help-me
ENCOUNTER WITH THE INFINITE
http://www.believermag.com/issues/201501/?read=article_schneider_phelan
The Believer - Encounter with the Infinite
www.believermag.com/issues/201501/?read=article_schneider...
このページを訳す
Something similar is true of Srinivasa Ramanujan, the super-genius who was born into deep poverty in an obscure part of ...... Eight hundred years ago, the South Indian mathematician Bhaskaracharya wrote that dividing by zero yielded a ...
Srinivasa Ramanujan : The man who knew infinity
https://examplewordpresscom73556.wordpress.com/2016/03/05/srinivasa-ramanujan-the-man-who-knew-infinity/
再生核研究所声明311(2016.07.05) ゼロ0とは何だろうか
ここ2年半、ゼロで割ること、ゼロ除算を考えているが、ゼロそのものについてひとりでに湧いた想いがあるので、その想いを表現して置きたい。
数字のゼロとは、実数体あるいは複素数体におけるゼロであり、四則演算で、加法における単位元(基準元)で、和を考える場合、何にゼロを加えても変わらない元として定義される。積を考えて変わらない元が数字の1である:
Wikipedia:ウィキペディア:
初等代数学[編集]
数の 0 は最小の非負整数である。0 の後続の自然数は 1 であり、0 より前に自然数は存在しない。数 0 を自然数に含めることも含めないこともあるが、0 は整数であり、有理数であり、実数(あるいは代数的数、複素数)である。
数 0 は正でも負でもなく、素数でも合成数でも単数でもない。しかし、0は偶数である。
以下は数 0 を扱う上での初等的な決まりごとである。これらの決まりはxを任意の実数あるいは複素数として適用して構わないが、それ以外の場合については何も言及していないということについては理解されなければならない。
加法:x + 0 = 0 +x=x. つまり 0 は加法に関する単位元である。
減法: x− 0 =x, 0 −x= −x.
乗法:x 0 = 0 ·x= 0.
除法:xが 0 でなければ0⁄x= 0 である。しかしx⁄0は、0 が乗法に関する逆元を持たないために、(従前の規則の帰結としては)定義されない(ゼロ除算を参照)。
実数の場合には、数直線で、複素数の場合には複素平面を考えて、すべての実数や複素数は直線や平面上の点で表現される。すなわち、座標系の導入である。
これらの座標系が無ければ、直線や平面はただ伸びたり、拡がったりする空間、位相的な点集合であると考えられるだろう。― 厳密に言えば、混沌、幻のようなものである。単に伸びたり、広がった空間にゼロ、原点を対応させるということは 位置の基準点を定めること と考えられるだろう。基準点は直線や平面上の勝手な点にとれることに注意して置こう。原点だけでは、方向の概念がないから、方向の基準を勝手に決める必要がある。直線の場合には、直線は点で2つの部分に分けられるので、一方が正方向で、他が負方向である。平面の場合には、原点から出る勝手な半直線を基準、正方向として定めて、原点を回る方向を定めて、普通は時計の回りの反対方向を 正方向と定める。これで、直線や平面に方向の概念が導入されたが、さらに、距離(長さ)の単位を定めるため、原点から、正方向の点(これも勝手に指定できる)を1として定める。実数の場合にも複素数の場合にも数字の1をその点で表す。以上で、位置、方向、距離の概念が導入されたので、あとはそれらを基礎に数直線や複素平面(座標)を考える、すなわち、直線と実数、平面と複素数を1対1に対応させる。これで、実数も複素数も秩序づけられ、明瞭に表現されたと言える。ゼロとは何だろうか、それは基準の位置を定めることと発想できるだろう。
― 国家とは何だろうか。国家意思を定める権力機構を定め、国家を動かす基本的な秩序を定めることであると原理を述べることができるだろう。
数直線や複素平面では 基準点、0と1が存在する。これから数学を展開する原理を下記で述べている:
しかしながら、数学について、そもそも数学とは何だろうかと問い、ユニバースと数学の関係に思いを致すのは大事ではないだろうか。この本質論については幸運にも相当に力を入れて書いたものがある:
No.81, May 2012(pdf 432kb)
19/03/2012
ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅.広く面白く触れたい。
複素平面ではさらに大事な点として、純虚数i が存在するが、ゼロ除算の発見で、最近、明確に認識された意外な点は、実数の場合にも、複素数の場合にも、ゼロに対応する点が存在するという発見である。ゼロに対応する点とは何だろうか?
直線や平面で実数や複素数で表されない点が存在するであろうか? 無理して探せば、いずれの場合にも、原点から無限に遠ざかった先が気になるのではないだろうか? そうである立体射影した場合における無限遠点が正しくゼロに対応する点ではないかと発想するだろう。その美しい点は無限遠点としてその美しさと自然さ故に100年を超えて数学界の定説として揺るぐことはなかった。ゼロに対応する点は無限遠点で、1/0=∞ と考えられてきた。オイラー、アーベル、リーマンの流れである。
ところが、ゼロ除算は1/0=0 で、実は無限遠点はゼロに対応していることが確認された。
直線を原点から、どこまでも どこまでも遠ざかって行くと、どこまでも行くが、その先まで行くと(無限遠点)突然、ゼロに戻ることを示している。これが数学であり、我々の空間であると考えられる。この発見で、我々の数学の結構な部分が修正、補充されることが分かりつつある。
ゼロ除算は可能であり、我々の空間の認識を変える必要がある。ゼロで割る多くの公式である意味のある世界が広がってきた。それらが 幾何学、解析学、代数学などと調和して数学が一層美しい世界であることが分かってきた。
全ての直線はある意味で、原点、基準点を通ることが示されるが、これは無限遠点の影が投影されていると解釈され、原点はこの意味で2重性を有している、無限遠点と原点が重なっている現象を表している。この2重性は 基本的な指数関数y=e^x が原点で、0 と1 の2つの値をとると表現される。このことは、今後大きな意味を持ってくるだろう。
古来、ゼロと無限の関係は何か通じていると感じられてきたが、その意味が、明らかになってきていると言える。
2点から無限に遠い点 無限遠点は異なり、無限遠点は基準点原点の指定で定まるとの認識は面白く、大事ではないだろうか。
以 上
再生核研究所声明296(2016.05.06) ゼロ除算の混乱
ゼロ除算の研究を進めているが、誠に奇妙な状況と言える。簡潔に焦点を述べておきたい。
ゼロ除算はゼロで割ることを考えることであるが、物理学的にはアリストテレス、ニュートン、アンシュタインの相当に深刻な問題として、問題にされてきた。他方、数学界では628年にインドで四則演算の算術の法則の確立、記録とともに永年問題とされてきたが、オイラー、アーベル、リーマン達による、不可能であるという考えと、極限値で考えて無限遠点とする定説が永く定着してきている。
ところが数学界の定説には満足せず、今尚熱い話題、問題として、議論されている。理由は、ゼロで割れないという例外がどうして存在するのかという、素朴な疑問とともに、積極的に、計算機がゼロ除算に出会うと混乱を起こす具体的な懸案問題を解消したいという明確な動機があること、他の動機としてはアインシュタインの相対性理論の上手い解釈を求めることである。これにはアインシュタインが直接言及しているように、ゼロ除算はブラックホールに関係していて、ブラックホールの解明を意図している面もある。偶然、アインシュタイン以後100年 実に面白い事件が起きていると言える。偶然、20年以上も考えて解明できたとの著書さえ出版された。― これは、初めから、間違いであると理由を付けて質問を送っているが、納得させる回答が無い。実名を上げず、具体的に 状況を客観的に述べたい。尚、ゼロ除算はリーマン仮説に密接に関係があるとの情報があるが 詳しいことは分からない。
1: ゼロ除算回避を目指して、新しい代数的な構造を研究しているグループ、相当な積み重ねのある理論を、体や環の構造で研究している。例えて言うと、ゼロ除算は沢山存在するという、考え方と言える。― そのような抽象的な理論は不要であると主張している。
2:同じくゼロ除算回避を志向して 何と0/0 を想像上の数として導入し、正、負無限大とともに数として導入して、新しい数の体系と演算の法則を考え、展開している。相当なグループを作っているという。BBCでも報じられたが、数学界の評判は良くないようである。― そのような抽象的な理論は不要であると主張している。
3:最近、アインシュタインの理論の専門家達が アインシュタインの理論から、0/0=1, 1/0=無限 が出て、ゼロ除算は解決したと報告している。― しかし、これについては、論理的な間違いがあると具体的に指摘している。結果も我々の結果と違っている。
4:数学界の永い定説では、1/0 は不可能もしくは、極限の考え方で、無限遠点を対応させる. 0/0 は不定、解は何でも良いとなっている。― 数学に基本的な欠落があって、ゼロ除算を導入しなければ数学は不完全であると主張し、新しい世界観を提起している。
ここ2年間の研究で、ゼロ除算は 何時でもゼロz/0=0であるとして、 上記の全ての立場を否定して、新しい理論の建設を進めている。z/0 は 普通の分数ではなく、拡張された意味でと初期から説明しているが、今でも誤解していて、混乱している人は多い、これは真面目に論文を読まず、初めから、問題にしていない証拠であると言える。
上記、関係者たちと交流、討論しているが、中々理解されず、自分たちの建設している理論に固執しているさまがよく現れていて、数学なのに、心情の問題のように感じられる微妙で、奇妙な状況である。
我々のゼロ除算の理論的な簡潔な説明、それを裏付ける具体的な証拠に当たる結果を沢山提示しているが、中々理解されない状況である。
数学界でも永い間の定説で、初めから、問題にしない人は多い状況である。ゼロ除算は算数、ユークリッド幾何学、解析幾何学など、数学の基本に関わることなので、この問題を究明、明確にして頂きたいと要請している:
再生核研究所声明 277(2016.01.26):アインシュタインの数学不信 ― 数学の欠陥
再生核研究所声明 278(2016.01.27): 面白いゼロ除算の混乱と話題
再生核研究所声明279(2016.01.28) : ゼロ除算の意義
再生核研究所声明280(2016.01.29) : ゼロ除算の公認、認知を求める
我々のゼロ除算について8歳の少女が3週間くらいで、当たり前であると理解し、高校の先生たちも、簡単に理解されている数学、それを数学の専門家や、ゼロ除算の専門家が2年を超えても、誤解したり、受け入れられない状況は誠に奇妙で、アリストテレスの2000年を超える世の連続性についての固定した世界観や、上記天才数学者たちの足跡、数学界の定説に まるで全く嵌っている状況に感じられる。
以 上
考えてはいけないことが、考えられるようになった。
説明できないことが説明できることになった。
Matrices and Division by Zero z/0 = 0
http://file.scirp.org/pdf/ALAMT_2016061413593686.pdf
再生核研究所声明 148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
100割る0 の意味を質問されたが(なぜ 100÷0は100ではないのか? なぜ 100÷1は100なのか… 0とは何...aitaitokidakenimoさん)、これは、定義によれば、その解、答えが有るとして、a と仮に置けば、 100=a x0 = 0 で矛盾、すなわち、解は、答えは存在しないとなる。
方程式 a x0= b は b=0 でなければ 解は無く、答えが求まらない。(特に、bが0ならば、解 a は 何でも良いと言うことに成る。)
解が、存在しなかったり、沢山の解が有ったりすると言う、状況である。
そこで、何時でも解が存在するように、しかも唯一つに定まるように、さらに 従来成り立っていた結果が そのまま成り立つように(形式不変の原理)、割り算の考えを拡張できないかと考えるのは、数学では よくやることである。数学の世界を 美しくしたいからである。
実際、文献の論文で 任意関数で割る概念を導入している。
現在の状況では、b 割るa の意味を ax – b の2乗を最小にする x で、しかも x の2乗を最小にする数 x で定義する。後半の部分が無いと、a が0の場合 x が定まらない。後半が有ると0として、唯一つに定まる。この意味で割り算の意味を考えれば、100割る0は 0 であるとなる。
上記で もちろん、2乗を最小にする の最小値が0である場合が、 普通の割り算の解、
b 割るa を与える。
もちろん、我々の意味で、0割る0は 曖昧なく、解は唯一つに定まって、0となる。
f 割る g を ロシアの著名な数学者 チコノフの考えた正則化法 と 再生核の理論 を併用すると 一般的な割り算を 任意関数g で定義できて、上記の場合は、100割る0は 0 という解に成る。
すなわち、解が存在しなかった場合に、割り算の意味を 自然に拡張すると 唯一つに解は存在して それは0であると言う、結果である。
上記で、ax – b の2乗を最小にする x で、と考えるのは、近似の考え方から、極めて自然と考えられるが、さらに、x の2乗を最小にする数 x とは、神は、最も簡単なものを選択する、これはエネルギー最小のもの、できれば横着したい という 世に普遍的に存在する 神の意志 が現れていると考えられる(光は、最短時間で到達するような経路で進むという ― フェルマーの原理)、神が2を愛している、好きだ とは 繰り返し述べてきた(神は 2を愛し給う)(http://www.jams.or.jp/kaiho/kaiho-81.pdf)。
これで、0で割るときの心配が無くなった。この考えの 実のある展開と応用は多い。
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
以 上
文献:
Castro, L.P.; Saitoh, S. Fractional functions and their representations. Complex Anal. Oper. Theory 7, No. 4, 1049-1063 (2013).
ゼロの発見には大きく分けると二つの事が在ると言われています。
一つは数学的に、位取りが出来るということ。今一つは、哲学的に無い状態が在るという事実を知ること。http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1462816269
世界中で、ゼロ除算は 不可能 か
可能とすれば ∞ だと考えられていたが・・・
しかし、ゼロ除算 はいつでも可能で、解は いつでも0であるという意外な結果が得られた。
原点を中心とする単位円に関する原点の鏡像は、どこにあるのでしょうか・・・・
∞ では
無限遠点はどこにあるのでしょうか・・・・・
無限遠点は存在するが、無限大という数は存在しない・・・・
ゼロ除算(1/0=0)は、ピタゴラスの定理(a2 + b2 = c2 )を超えた基本的な結果であると考えられる。
地球平面説→地球球体説
天動説→地動説
何年かかったでしょうか????
1/0=∞若しくは未定義 →1/0=0
何年かかるでしょうか????
Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/
もし1+1=2を否定するならば、どのような方法があると思いますか? http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q12153951522 #知恵袋_
一つの無限と一つの∞を足したら、一つの無限で、二つの無限にはなりません。
割り算のできる人には、どんなことも難しくない
世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。
ベーダ・ヴェネラビリス
数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年
数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1411588849 #知恵袋_
割り算を掛け算の逆だと定義した人は、誰でしょう???
0×0=0・・・・・・・・・だから0で割れないと考えた。
唯根拠もなしに、出鱈目に言っている人は世に多い。
multiplication・・・・・増える 掛け算(×) 1より小さい数を掛けたら小さくなる。 大きくなるとは限らない。
ビッグバン宇宙論と定常宇宙論について、http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1243254887 #知恵袋_
ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・・ 1+1=2が当たり前のように
『ゼロをめぐる衝突は、哲学、科学、数学、宗教の土台を揺るがす争いだった』 ⇒ http://ameblo.jp/syoshinoris/entry-12089827553.html … … →ゼロ除算(100/0=0, 0/0=0)が、当たり前だと最初に言った人は誰でしょうか・・・ 1+1=2が当たり前のように、
1÷0=0 1÷0=∞・・・・数ではない 1÷0=不定・未定義・・・・狭い考え方をすれば、できない人にはできないが、できる人にはできる。
アラビア数字の伝来と洋算 - tcp-ip
明治5年(1872)
http://www.tcp-ip.or.jp/~n01/math/arabic_number.pdf
ゼロ除算の証明・図|ysaitoh|note(ノート) https://note.mu/ysaitoh/n/n2e5fef564997
Q)ピラミッドの高さを無限に高くしたら体積はどうなるでしょうか??? A)答えは何と0です。 ゼロ除算の結果です。
ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。
∞÷0はいくつですか・・・・・・・
∞とはなんですか・・・・・・・・
分からないものは考えられません・・・・・
1人当たり何個になるかと説いていますが、1人もいないのですから、その問題は意味をなさない。
よってこれは、はじめから問題になりません。
ついでですが、これには数学的に確定した解があって それは0であるという事が、最近発見されました。
Reality of the Division by Zero z/0 = 0
http://www.ijapm.org/show-63-504-1.html
http://okmr.yamatoblog.net/
Einstein's Only Mistake: Division by Zero
http://refully.blogspot.jp/2012/05/einsteins-only-mistake-division-by-zero.html
再生核研究所声明306(2016.06.21) 平行線公理、非ユークリッド幾何学、そしてゼロ除算
表題について、山間部を散歩している折り新鮮な感覚で、想いが湧いて来た。新しい幾何学の発見で、ボーヤイ・ヤーノシュが父に言われた 平行線の公理を証明できたら、地球の大きさ程のダイヤモンドほどの値打ちがあると言われて、敢然と証明に取り掛かった姿とその帰結である。また、ユークリッドが海岸を散歩しながら幾何学を建設していく情景が鮮やかに想い出された(Liwanovaの『新しい幾何学の発見』(のちに『ロバチェフスキーの世界』と改題)(東京図書刊行)。この件、既に声明に述べているので、まずは確認したい:
再生核研究所声明292(2016.03.25) ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)
まず基本語をウイキペデアで確認して置こう:
https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%A6%E3%82%AF%E3%83%AC%E3%82%A4%E3%83%87%E3%82%B9
アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。
https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%
非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。
ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。
ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。
この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。
ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。
何と ユークリッド空間で 平行線は ある意味で全て原点で交わっている という、現象が明らかにされた。
もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。
そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。
ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。
この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。
平行線の交わりを考えてみる。交わる異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。
一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。
ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。
以上
上記で、数学的に大事な観点は、ユークリッド自身そうであったが、平行線公理は真理で、証明されるべきもの、幾何学は絶対的な真理であると非ユークリッド幾何学の出現まで、考えられてきたということである。2000年を超える世界観であった事実である。そこで、平行線の公理を証明しようと多くの人が挑戦してきたが、非ユークリッド幾何学の出現まで不可能であった。実は、証明できない命題であったという全く意外な帰結であった。真に新しい、概念、世界観であった。証明できない命題の存在である。それこそ、世界観を変える、驚嘆すべき世界史上の事件であったと言える。
この事件に関してゼロ除算の発見は、全く異なる世界観を明らかにしている。ユークリッドそして、非ユークリッド幾何学の3人の発見者にとって、全く想像ができなかった、新しい事実である。平行線が 無限の先で交わっているとは ユークリッドは考えなかったと思われるが、近代では、無限の先で交わっていると考えられて来ている。― これには、アーベル、オイラー、リーマンなどの考えが存在する。このような考えは、ここ100年以上、世界の常識、定説になっている。ところがゼロ除算では、無限遠点は 数ではゼロが対応していて、平行線は代数的に原点で交わっている、すべての直線は代数的に原点を通っているという解釈が成り立つことを示している。
ユークリッドの幾何学の建設時の想い、ボーヤイ・ヤーノシュの激しい挑戦の様を、 想い を 深く、いろいろ想像している。
以 上
Matrices and Division by Zero z/0 = 0
http://file.scirp.org/pdf/ALAMT_2016061413593686.pdf
再生核研究所声明310(2016.06.29) ゼロ除算の自明さについて
人間の感性の観点から、ゼロ除算の自明さについて触れて置きたい。ゼロ除算の発見は誠に奇妙な事件である。まずは、近似の方法から自然に導かれた結果であるが、結果が全然予想されたことのない、とんでもないことであったので、これは何だと衝撃を受け、相当にその衝撃は続いた。まずは、数学的な論理に間違いがないか、厳重に点検を行い、それでも信じられなかったので、多くの友人、知人に意見を求めた。高橋眞映山形大学名誉教授のゼロ除算の一意性定理は大事だったので、特に厳重に検討した。多くの友人も厳重に時間をかけて検討した経過がよく思い出される。その他、いろいろな導入が発見されても、信じられない心境は1年を超えて続いたと言える。数学的に厳格に、論理的に確立しても 心情的に受け入れられない感情 が永く続いた。そのような心境を相当な人たちが抱いたことが国際的な交流でも良く分かる。中々受け入れらない、ゼロ除算の結果はそうだと受け入れられない、認められない空気であった。ゼロ除算の発展は世界史上の事件であるから、経過など出来るだけ記録するように努めてきた。
要するに、世界中の教科書、学術書、定説と全く違う結果が 世に現れたのである。慎重に、慎重に畏れを抱いて研究を進めたのは 当然である。
そこで、証拠のような具体例の発見に努めた。明確な確信を抱くために沢山の例を発見することとした。最初の2,3件の発見が特に難しかった。内容は次の論文に、招待され、出版された: http://www.ijapm.org/show-63-504-1.html :
ゼロ除算を含む、山田体の発見、
原点の鏡像が(原点に中心をもつ円に関する)無限遠点でなく ゼロであること、
x,y直角座標系で y軸の勾配がゼロであること、
同軸2輪回転からの、ゼロ除算の物理的な意味付け、
これらの成果を日本数学会代数学分科会で発表し、また、ゼロ除算の解説(2015.1.14)を1000部印刷広く配布してきた。2年間の時間の経過とともに我々の数学として、実在感が確立してきた。その後、広範にゼロ除算がいろいろなところに現れていることが沢山発見され、やがて、ゼロ除算は自明であり数学の初歩的な欠落部分であるとの確信を深めるようになってきている。
単に数学の理論だけでなく、いろいろな具体例が認識の有り様を、感性を変えることが分かる。そこで、何もかも分かったという心境に至るには、素朴な具体例で、何もかも当たり前であるという心理状況に至ることが大事であるが、それは、環境で心自体が変わる様をしめしている。本来1つの論文であった原稿は 招待されたため次の2つの論文に出版される:
(2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra
& Matrix Theory, 6, 51-58.
http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
Division by Zero z/0 = 0 in Euclidean Spaces:
International Journal of Mathematics and Computation 9 Vol. 28; Issue 1, 2017)。
沢山の具体例が述べられていて、ゼロ除算が基本的な数学であることは、既に確立していると考えられる。沢山の具体例が、そのような心境に至らしめている。
ゼロ除算の自明さを論理ではなく、簡単に 直感的な説明として述べたい。
基本的な関数y=1/xを考え、そのグラフを見よう。原点の値は考えないとしているが、考えるとすれば、値は何だろうか? ゼロではないか と 思えば、ゼロ除算は正解である。それで十分である。その定義から、応用や意味付けを検討すれば良い。― 誰でも値は ゼロであると考えるのではないだろうか。中心だから、真ん中だから。あるいは平均値だからと考えるのではないだろうか。それで良い。
0/0=0 には違う説明が必要である。条件付き確率を考えよう。 A が起きたという条件の下で、B が起きる条件付き確率を考えよう。 その確率P(B|A) は AとBの共通事象ABの確率P(AB) と A が起きる確率P(A)との比 P(B|A)=P(AB)/P(A) で与えられる。もし、Aが起きなければ、すなわち、P(A) =0 ならば、もちろん、P(AB) =0. 意味を考えても分かるようにその時当然、P(B|A) =0である。 すなわち、0/0=0は 当たり前である。
以 上
0 件のコメント:
コメントを投稿