2016年3月28日月曜日

板垣さん、おおぐま座の銀河に超新星発見、117個目

板垣さん、おおぐま座の銀河に超新星発見、117個目

山形県の板垣公一さんが3月21日、おおぐま座の銀河に超新星2016bkvを発見した。板垣さんの超新星発見は今年3個目、通算117個目。

【2016年3月24日 Transient Name Server/ATel】

山形県の板垣公一さんが3月21日16時53分ごろ(世界時。日本時では22日1時53分ごろ)、おおぐま座方向の銀河NGC 3184に超新星候補天体を17.2等で発見した。天体の位置は以下のとおり。

赤経 10h18m19.31s
赤緯 +41°25′39.30″ (2000年分点)
おおぐま座の超新星
おおぐま座の超新星の確認観測画像(撮影:清田誠一郎さん、一部を切り出し)

ハワイで行われた分光観測からII型超新星とみられており、2016bkvの符号が付けられた。

NGC 3184周辺の星図と、DSS画像に表示した超新星
NGC 3184周辺の星図と、DSS画像に表示した超新星。クリックで拡大(「ステラナビゲータ」で星図作成。DSS画像の版権について)

板垣さんによる超新星発見は今年3個目、通算発見数は117個(独立発見を含む)となった。

母銀河のNGC 3184には過去に4個の超新星が発見されており、うち1999年12月の超新星1999giは串田麗樹さんが発見したものだ。また2010年6月には板垣さんが新天体を発見し、超新星符号(2010dn)が付けられたが、のちに高光度青色変光星(LBV)が増光したものらしいと判明している。http://www.astroarts.co.jp/news/2016/03/24sn_uma/

再生核研究所声明152(2014.3.21) 研究活動に現れた注目すべき現象、研究の現場

今回、100/0=0,0/0=0の発見と研究活動で いわば、研究のライブの状況が明瞭に現われたので、研究の現場の状況として纏めてみたい。多くはメールや文書で 時刻入れで 文書が保管されている。一般的に注目すべきことはゴシック体で記そう。
まず、発見現場であるが、偶然に 印刷された原稿を見て発見したと言うことである。思いがけないことに、気づいたということである。言われてみれば、当たり前のことで、気付かない方がおかしく、馬鹿みたいなことになるだろう。たわいもないものの類である。しかし、結果が尋常ではないので、大事だと 説明されても、原稿を見せても そんなものは駄目、全然価値が無いと結構多くの人が大きな批判を寄せてきたのは 大いに注目に値する。わざわざ複数の外国からメールがいわば上司にきて、批判して、研究内容について意見を求めるメールさえ するのを禁じられた程である。予断と偏見によるもの、が大部分であると判断できる。それから 価値観に本質的な違いがあること を露わに実感した。原稿を見て、これは 面白いと捉えて 研究を発展させて素晴しい論文を書かれた者がいる一方 そんなの 駄目だ で、ただ批判して傍観している者。これは 研究者の素養として、能力として極めて大きな問題ではないだろうか。研究内容の、良い、悪いが判断できない、興味、関心が無い。愛が無ければ見えない、進まないは 基本では? 研究において、最も大事なのは、愛が有るか、関心が有るか、価値を認められるか、好奇心が有るかではないだろうか。 これらが無ければ、幾ら宝のようなものに出会っても、探し出せないのではないだろうか。あることに 高い価値を見出し、情熱的に追及して行く精神は、研究者としての素養として大事ではないだろうか。良いか、悪いか評価できなければ、判断出来なければ、唯 夢中で何かの延長を 他を意識して進めるだけになってしまう。良いものを 良いと評価できる能力は、理解力、解決力、創造力などと共に大事な能力ではないだろうか。場合によっては、人格の高潔さにも依存する要素も多い。意図的に無視するは 世に多いからである。
それから、新しい考え、発想が無意識の内に湧いてくる ものであるという、事実である。目を覚ましたら解けていた、新しい考えで 突然目を覚ましたと繰り返して書いてきた。それから、それらは精神状態によるのであるが、コーヒー、茶、特にジャスミン茶で 大いに興奮して、どんどん考えが湧いて来るのを実感した。結構、そのようなものの影響も無視できない。
それから研究活動で大事な要素は 積極性である。今回、多くの人が 研究に参加されたが、意外な人が 意外な才能を発揮して、意外な視点を 指摘され、発展させてくれたという顕著な事実である。全然興味を懐かないような人でも 話すと興味を示し、大きな貢献をしてくれた。現在のように忙しく、論文を送られてきても読む暇も、関わる余裕も無いは 世に多い現象であるが、直接話すと 本質を理解されて、興味を懐くは 世に多い。直接交流の重要性を指摘しておきたい。メールなどでも、交信からいろいろな刺激を受け、考えが湧く素に成るのは多い、精神が鼓舞される場面も多い。それから、凄い発見を事実上していても、理解が難しい、あるいは批判を恐れて 追求を諦めてしまう、主張を避けて諦めてしまうのは 世に多いのではないかとも感じられる。良いものを発見しても、認められるまで、努力するのは そう簡単なことではないように感じられる。
最後に 研究の最も大事な心を 2014.3.11ブログに書いた記事を編集して記して置こう:

特異点解明の歩み100/0=0,0/0=0:関係者: 独断と偏見、人類の知能

ふと思い浮かんだ: 天才少年の質問(再生核研究所声明 9: 天才教育の必要性を訴える ):

0.999…. = 1 の意味は、何か

当時8歳の少年でした。私は だれをも納得させる明快な解答を与えたが、相当な、国内外の相当な数学者に尋ねたが これまで誰からも満足する解答を得なかった。これは 知識で、学んでいて 理解が薄っぺらなことを言っているのではないだろうか。少しも、真智を求めては来なかった:
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。― 再生核研究所声明148.(もっとも何でも は 究められない)
それ故に、ゼロで割る考えが 思い浮かばなかったのでは。人類の知能は その程度である。真智を求めている者は 世に稀であり、多くは断片的な世界に閉じこもり、埋没し、自己さえ見失っている。また、日常生活に埋没していると言える。

以 上

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 293: Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
\date{\today}
\maketitle
{\bf Abstract: } In this announcement, for its importance we would like to declare that any parallel lines have the common point $(0,0) $ in the sense of the division by zero. From this fact we have to change our basic idea for the Euclidean plane and we will see a new world for not only mathematics, but also the universe.

\bigskip
\section{Introduction}
%\label{sect1}
By a {\bf natural extension} of the fractions
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$
\begin{equation}
\frac{b}{0}=0,
\end{equation}
incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers. The result is a very special case for general fractional functions in \cite{cs}. 

The division by zero has a long and mysterious story over the world (see, for example, Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628, however,
Sin-Ei, Takahasi (\cite{taka}) (see also \cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):

\bigskip

{\bf Proposition 1. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ satisfying
$$
F (b, a)F (c, d)= F (bc, ad)
$$
for all
$$
a, b, c, d \in {\bf C }
$$
and
$$
F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0.
$$
Then, we obtain, for any $b \in {\bf C } $
$$
F (b, 0) = 0.
$$
}


\medskip
We thus should consider, for any complex number $b$, as (1.2);
that is, for the mapping
\begin{equation}
w = \frac{1}{z},
\end{equation}
the image of $z=0$ is $w=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere (\cite{ahlfors}). Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.

However, the division by zero (1.2) is now clear, indeed, for the introduction of (1.2), we have several independent approaches as in:

\medskip
1) by the generalization of the fractions by the Tikhonov regularization or by the Moore-Penrose generalized inverse,

\medskip
2) by the intuitive meaning of the fractions (division) by H. Michiwaki,

\medskip
3) by the unique extension of the fractions by S. Takahasi, as in the above,

\medskip
4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from ${\bf C}$ onto ${\bf C}$,

\medskip
and

\medskip

5) by considering the values of functions with the mean values of functions.
\medskip

Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:

\medskip

\medskip
A) a field structure containing the division by zero --- the Yamada field ${\bf Y}$,

\medskip
B) by the gradient of the $y$ axis on the $(x,y)$ plane --- $\tan \frac{\pi}{2} =0$,
\medskip

C) by the reflection $1/\overline{z}$ of $z$ with respect to the unit circle with center at the origin on the complex $z$ plane --- the reflection point of zero is zero,
\medskip

and
\medskip

D) by considering rotation of a right circular cone having some very interesting
phenomenon from some practical and physical problem --- EM radius.

\medskip

See also \cite{bht} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their paper.

Meanwhile, J. P. Barukcic and I. Barukcic (\cite{bb}) discussed recently the relation between the division $0/0$ and special relative theory of Einstein.

Furthermore, Reis and Anderson (\cite{ra,ra2}) extends the system of the real numbers by defining division by zero.

Meanwhile, we should refer to up-to-date information:

{\it Riemann Hypothesis Addendum - Breakthrough

Kurt Arbenz
https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum - Breakthrough.}

\medskip

Here, we recall Albert Einstein's words on mathematics:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

For our results, see the survey style announcements 179,185,237,246, 247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252}).

At this moment, the following theorem may be looked as the fundamental theorem of the division by zero:


\bigskip
{\bf Theorem (\cite{mst}).} {\it Any analytic function takes a definite value at an isolated singular point }{\bf with a natural meaning.}

\bigskip
The following corollary shows how to determine the value of an analytic function at the singular point; that is, the value is determined from the regular part of the Laurent expansion:

\bigskip

{\bf Corollary.} {\it For an isolated singular point $a$ of an analytic function $f(z)$, we have the Cauchy integral formula
$$
f(a) = \frac{1}{2\pi i} \int_{\gamma} f(z) \frac{dz}{z - a},
$$
where the $\gamma$ is a rectifiable simple Jordan closed curve that surrounds one time the point $a$
on a regular region of the function $f(z)$.
}

\bigskip

The essential meaning of this theorem and corollary is given by that: the values of functions may be understood in the sense of the mean values of analytic functions.


\medskip

In this announcement, we will state the basic property of parallel lines by the division by zero on the Euclidean plane and we will be able to see that the division by zero introduces a new world and fundamental mathematics.

In particular, note that the concept of parallel lines is very important in the Euclidean plane and non-Euclidean geometry. The essential results may be stated as known since the discovery of the division by zero $z/0=0$. However, for importance, we would like to state clearly the details.


\section{The point at infinity}

We will be able to see the whole Euclidean plane by the stereographic projection into the Riemann sphere --- {\it We think that in the Euclidean plane, there does not exist the point at infinity}.
However, we can consider it as a limit like $\infty$. Recall the definition of $z \to \infty$ by $\epsilon$-$\delta$ logic; that is, $\lim_{z \to \infty} z = \infty$ if and only if for any large $M>0$, there exists a number $L>0$ such that for any z satisfying $L <|z|$, $M<|z|$. In this definition, the infinity $\infty$ does not appear.
{\it The infinity is not a number, but it is an ideal space point.}

The behavior of the space around the point at infinity may be considered by that around the origin by the linear transform $W = 1/z$(\cite{ahlfors}). We thus see that

\begin{equation}
\lim_{z \to \infty} z = \infty,
\end{equation}
however,
\begin{equation}
[z]_{z =\infty} =0,
\end{equation}
by the division by zero. The difference of (2.1) and (2.2) is very important as we see clearly by the function $1/z$ and the behavior at the origin. The limiting value to the origin and the value at the origin are different. For surprising results, we will state the property in the real space as follows:
\begin{equation}
\lim_{x\to +\infty} x =+\infty , \quad \lim_{x\to -\infty} x = -\infty,
\end{equation}
however,
\begin{equation}
[x]_{ +\infty } =0, \quad [x]_{ -\infty } =0.
\end{equation}



\section{Interpretation by analytic geometry}

We write lines by
\begin{equation}
L_k: a_k x + b_k y + c_k = 0, k=1,2.
\end{equation}
The common point is given by, if $a_1 b_2 - a_2 b_1 \ne 0$; that is, the lines are not parallel
\begin{equation}
\left(\frac{b_1 c_2 - b_2 c_1}{a_1 b_2 - a_2 b_1}, \frac{a_2 c_1 - a_1 c_2}{a_1 b_2 - a_2 b_1}\right).
\end{equation}
By the division by zero, we can understand that if $a_1 b_2 - a_2 b_1 = 0$, then the commom point is always given by
\begin{equation}
(0,0),
\end{equation}
even the two lines are the same. This fact shows that the image of the Euclidean space in Section 2 is right.

\section{Remarks}
For a function
\begin{equation}
S(x,y) = a(x^2+y^2) + 2gx + 2fy + c,
\end{equation}
the radius $R$ of the circle $S(x,y) = 0$ is given by
\begin{equation}
R = \sqrt{\frac{g^2 +f^2 -ac}{a^2}}.
\end{equation}
If $a = 0$, then the area $\pi R^2$ of the circle is zero, by the division by zero; that is, the circle is line
(degenerate).

Here, note that by the Theorem, $R^2$ is zero for $a = 0$, but for (4.2) itself
\begin{equation}
R = \frac{-c}{2} \frac{1}{\sqrt{g^2 + f^2}}
\end{equation}
for $a=0$. However, this result will be nonsense, and so, in this case, we should consider $R$
as zero as $ 0^2 =0$. When we apply the division by zero to functions, we can consider, in general, many ways.

For example,
for the function $z/(z-1)$, when we insert $z=1$ in numerator and denominator, we have
\begin{equation}
\left[\frac{z}{z-1}\right]_{z = 1} = \frac{1}{0} =0.
\end{equation}
However, in the sense of the Theorem,
from the identity
\begin{equation}
\frac{z}{z-1} = \frac{1}{z-1} + 1,
\end{equation}
we have
\begin{equation}
\left[\frac{z}{z-1}\right]_{z = 1} = 1.
\end{equation}
By the Theorem, for analytic functions we can give uniquely determined values at isolated singular points, however, the values by means of the Laurent expansion are not always reasonable. We will need to consider many interpretations for reasonable values.

In addition, the center of the circle (4.3) is given by
\begin{equation}
\left( - \frac{g}{a},- \frac{f}{a}\right).
\end{equation}
Therefore, the center of a general line
\begin{equation}
2gx + 2fy + c=0
\end{equation}
may be considered as the origin $(0,0)$, by the division by zero.


We can see similarly the 3 dimensional versions.
\medskip

We consider the functions
\begin{equation}
S_j(x,y) = a_j(x^2+y^2) + 2g_jx + 2f_jy + c_j.
\end{equation}
The distance $d$ of the centers of the circles $S_1(x,y) =0$ and $S_2(x,y) =0$ is given by
\begin{equation}
d^2= \frac{g_1^2 + f_1^2}{a_1^2} - 2 \frac{g_1 g_2 + f_1 f_2}{a_1 a_2} + \frac{g_2^2 + f_2^2}{a_2^2}.
\end{equation}
If $a_1 =0$, then by the division by zero
\begin{equation}
d^2= \frac{g_2^2 + f_2^2}{a_2^2}.
\end{equation}
Then, $S_1(x,y) =0$ is a line and its center is the origin $(0,0)$.


\bigskip

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{ahlfors}
L. V. Ahlfors, Complex Analysis, McGraw-Hill Book Company, 1966.

\bibitem{bb}
J. P. Barukcic and I. Barukcic, Anti Aristotle - The Division Of Zero By Zero,
ViXra.org (Friday, June 5, 2015)
© Ilija Barukčić, Jever, Germany. All rights reserved. Friday, June 5, 2015 20:44:59.

\bibitem{bht}
J. A. Bergstra, Y. Hirshfeld and J. V. Tucker,
Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).

\bibitem{cs}
L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
H. Michiwaki, S. Saitoh, and M.Yamada,
Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. 6(2015), 1--8. http://www.ijapm.org/show-63-504-1.html

\bibitem{mst}
H. Michiwaki, S. Saitoh and M. Takagi,
A new concept for the point at infinity and the division by zero z/0=0
(manuscript).

\bibitem{ra}
T. S. Reis and James A.D.W. Anderson,
Transdifferential and Transintegral Calculus,
Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I
WCECS 2014, 22-24 October, 2014, San Francisco, USA

\bibitem{ra2}
T. S. Reis and James A.D.W. Anderson,
Transreal Calculus,
IAENG International J. of Applied Math., 45: IJAM 45 1 06.

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/

\bibitem{taka}
S.-E. Takahasi,
{On the identities $100/0=0$ and $ 0/0=0$.}
(note)

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no. 2, 369-380.

\bibitem{ann179}
Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.

\bibitem{ann185}
Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.

\bibitem{ann237}
Announcement 237 (2015.6.18): A reality of the division by zero $z/0=0$ by geometrical optics.

\bibitem{ann246}
Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.

\bibitem{ann247}
Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.

\bibitem{ann250}
Announcement 250 (2015.10.20): What are numbers? - the Yamada field containing the division by zero $z/0=0$.

\bibitem{ann252}
Announcement 252 (2015.11.1): Circles and
curvature - an interpretation by Mr.
Hiroshi Michiwaki of the division by
zero $r/0 = 0$.

\bibitem{ann281}
Announcement 281(2016.2.1): The importance of the division by zero $z/0=0$.

\bibitem{ann282}
Announcement 282(2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.


\end{thebibliography}

\end{document}













AD

0 件のコメント:

コメントを投稿