2015年12月21日月曜日

【Excelの関数】ISERRORの使い方 投稿日時: 2012年8月18日

【Excelの関数】ISERRORの使い方
投稿日時: 2012年8月18日


ISERROR関数は、セルの結果がエラーであるかどうかを判断します。ISERR関数と似ていますが、ISERROR関数では「#N/A」もエラーとして扱う点がことなります。

ISERROR関数とは
Excelで式や関数を使っていると、セルの値が「#N/A」「#DIV/0!」などのエラーになることがあります。ISERROR関数は、セルの結果がエラーかどうかを判断できます。エラーならTRUE、エラーでなければFALSEを返します。これをIF文と組み合わせると、セルの結果が「#DIV/0!」のときは、「ゼロ除算です」と日本語で表示するというように使えます。そうすると、エラーの内容が少しわかりやすくなりますね。
使い方の例
会社で印刷する資料の場合、Excelのエラーが表示されていると見栄えが悪くなります。そのような場合は、適切な日本語に置き換えるか、エラー表示そのものを消した方がいいかもしれません。
たとえば、
 =A1/B1
という式が入っているセルがあったとします。A1セルとA2セルには、好きな値をいれてください。このとき、B1セルの値がゼロや空白だと、「#DIV/0!」というエラーになります。これは、いわゆる「ゼロ除算」というエラーで、割り算(除算)で割る数がゼロのときに起こります。ちなみに、電卓でもゼロ除算はエラーになります。



ここでISERROR関数を使ってみましょう。
 =ISERROR(A1/B1)
のようにすると、計算結果(A1/B1)がエラーならTRUE、エラーでなければFALSEが表示されます。

これをIF文と組み合わせると、
 =IF(ISERROR(A1/B1),”エラーです”,A1/B1)
のようになります。ここでは、ゼロ除算が出たら「エラーです」と日本語で表示するようにしました。ISERROR関数で判別できるエラーはゼロ除算以外にも何種類かありますので(後述)、日本語の表示を「ゼロ除算」などに限定してしまうと不都合が出るかもしれません。

また、「=IF(ISERROR(A1/B1),””,A1/B1)」のようにすると、エラーのときは何も表示しないことも可能です。これも、無視して良いエラーかどうかはケースバイケースですので、作成された資料ごとに検討してください。

ISERROR関数で判別できるエラー
#N/A、#VALUE!、#REF!、#DIV/0!、#NUM!、#NAME?、#NULL!
 *「#N/A」をエラーとして判別したくない場合は、ISERR関数を使ってください。
 *「#N/A」のみを判別したい場合は、ISNA関数を使ってください。http://saku-saku-pc.com/excel/excel%E9%96%A2%E6%95%B0/%E3%80%90excel%E3%81%AE%E9%96%A2%E6%95%B0%E3%80%91iserror%E3%81%AE%E4%BD%BF%E3%81%84%E6%96%B9/

再生核研究所声明251(2015.10.27) 円と曲率 ―ゼロ除算z/0=0から導かれる道脇裕氏の解釈
(再生核研究所は ゼロ除算の研究を推進している。特に研究は初期段階にあるので ゼロ除算の実在感の観点からの考察を進めている。そのような折り、道脇裕氏が2015.9.3. 付け文書を送って来たので、要点を纏めて置きたい。)

底円の半径がr_2である直円錐を考える。 それを半径r_1 の底円に平行な円で切る。2つの円板の間の距離をdとする。 このとき、直円錐の頂点と底円板の間の 直円錐の表面上での 距離RはEM半径と呼ばれ、道脇愛羽(8歳)さん が計算され、

R=r_2/(r_2-r_1 ) √(d^2+(r_2-r_1 )^2 )

となる。これは2つの円板で囲まれた部分の 平面上での回転を考えたときに、底円が描く円の半径を計算されたものである。
半径Rの円の曲率はK=K(R)=1/Rで定義される。いま、r_1 がr_2 に近づいた場合を考える。もちろん、d を一定にしてである。まず、極限値を考えれば、Rは無限大に発散して、底円が描く円は 直線に近づき、実際、r_1 = r_2の時は 底円が描く円は直線になり、回転体は直線運動を行うことが分かる。
ところがゼロ除算は、r_1 =r_2のとき、Rがゼロであることを言っているが、それは、何を意味するだろうか。ゼロ除算は K=K(R)=1/R がR=0 でゼロと言っているから、その時の曲率がゼロ、すなわち、極限の場合と同様に、底円が描く円は直線になり、回転体は直線運動を行うことを述べている。
いまの場合、極限で考えた極限値とゼロ除算、すなわち、R=0自身の結果が同じことを述べている。
この現象は、ゼロ除算が現実の現象を良く表現しているものと考えられる。

同時に、半径ゼロの円(点)の曲率がゼロである ことをよく、表している。
上記、回転体の運動の例は、ゼロ除算の強力な不連続性をよく捉えたものとして、大変面白いのではないだろうか。

以 上

再生核研究所声明257 (2015.11.05) 無限大とは何か、 無限遠点とは何か ー 新しい視点
(道脇さんたちの、和算の伝統を感じさせるような、何とも 言えない魅力 がありますね。 添付のように完成させたい。例の専門家たち、驚いて対応を検討しているのでは?どんどん、事情がみえてきました. 今朝の疑問も きれいに散歩中 8時15分 ころ、解決できました.成文化したい。2015.11.1.9:7
無限遠点の値の意味を 約1年半ぶりに 神は関数値を平均値として認識する で 理解できました。今、気になるのは,どうして、正の無限 負の無限、および ゼロが近いのかです。その近いという意味を、 正確に理解できない。 近い事実は 添付する 電柱の左右の傾きに現れている。
log 0=0
と定義するのが 自然ですが、それには、 ゼロと マイナス無限大 が一致しているとも言える。 そのところが 不明、何か新しい概念、考え 哲学が 求められている???
2015.11.1.05:50)

ローラン展開の正則部の値の解釈のように(再生核研究所声明255 (2015.11.03) 神は、平均値として関数値を認識する)、実は当たり前だったのに、認識がおかしかったことに気づいたので、正確に表現したい。
まず、正の無限大とは何だろうか。 1,2,3,…… といけば、正の整数は 正の無限大に収束、あるいは発散すると表現するだろう。 この正確な意味は イプシロン、デルタ論法という表現で厳格に表現される。すなわち、 どんなに大きな 整数 n をとっても、あるN を取れば(存在して)、N より大の 全ての整数 m に対して、n < m が成り立つと定義できる。 いろいろな設定で、このようにして、無限は定義できる。 どんなに大きな数に対しても、より大の整数が存在する。 それでは、+∞ とは何だろうか。 限りなく大きな数の先を表す概念であることが分かる。 大事な視点は +∞は 定まった数ではなくて、極限で考えられたもので、近づいていく先を表した状況で考えられていることである。 これらの概念は極限の概念として、現代数学で厳格に定義され、その概念は新しいゼロ除算の世界でも、全て適切で、もちろん正しい。
簡単な具体例で説明しよう。 関数y=1/x のグラフはよく知られているように、正の実軸からゼロに近づけば、+∞に発散し、負からゼロに近づけば、-∞に発散する。 ところが、原点では、既に述べてきたように、その関数値はゼロである。 この状況を見て、0、+∞、-∞ らが近い、あるいは 一致していると誤解してはならない。+∞、-∞  らは数ではなく、どんどん大きくなる極限値や、どんどん小さくなる極限値を表しているのであって、それらの先、原点では突然にゼロにとんでいる 強力な不連続性を示しているのである。
複素解析における無限遠点も同様であって、立体射影で複素平面はリーマン球面に射影されるが、無限遠点とは あらゆる方向で原点から限りなく遠ざかった時に、想像上の点が存在するとして、その射影としてりーマン球面上の北極を対応させる。 関数W=1/z は原点でその点が対応すると、解析関数論では考え、原点で一位の極をとると表現してきた。
しかしながら、新しく発見されたゼロ除算では、1/0=0 であり 原点には、ゼロが対応すると言っている。 これは矛盾ではなくて、上記、一位の極とは、原点に近づけは、限りなく無限遠点に近づく、あるいは発散するという、従来の厳格議論はそのままであるが、ゼロ除算は、原点自身では、数としてゼロの値をきちんとして取っているということである。 この区別をきちんとすれば、従来の概念とゼロ除算はしっかりとした位置づけができる。 近づく値とそこにおける値の区別である。

以 上

再生核研究所声明249(2015.10.20)数とは何か ― ゼロ除算z/0=0を含む
(数とは、ゼロ除算z/0=0を含む 山田正人 体の元のことである:
2015.10.16.07:30 小雨の中、興奮しながら散歩していた。 その時、 上記のような直観が確信をもって、熱く閃いた。複素数体に対して、山田体を広く用いるべきである。 そこでは、例外なく逆数が定義され、言わば完備化空間のように完全になり、ゼロ除算の世界が拓かれてくる。
2015.10.16.08:12)

ゼロ除算z/0=0は 分数の自然な拡張として既に1+1=2のように自明であり、しかもそれは、我々の数学そのものであり、自然現象もきちんと表している。しかしながら、永い間の偏見の世界史、それも千年を超える偏見であり、天才的な数学者たちの足跡を省みて、中々世の中で理解されない状況があるのは、世の関係サイトを見ても良く分かる。それらには、そもそもゼロに対する恐怖心とゼロ除算にからむ、不可思議で奇妙な論調を見ることができる。
ゼロ除算のこのような歴史は、やがて人類の愚かさの象徴であると世界史で記録されるだろう。
1/0 とは何だと、恐怖心を抱く者は 尚世に多い状態と言える。公理論的に吟味したか、現代数学とは違う、変な世界の数学ではないか、数学的に正しくともそのような変な数学が大きな意味を持つはずがない等と 特に優秀な人たちが述べて来たのは大変興味深い事実である。
最近、数学基礎論、公理論、計算機科学の専門家たちのゼロ除算に関する論文を発見した
Meadows and the equational specification of division
J A Bergstra,Y Hirshfeld and J V Tucker
が、結論ではとにかく、奇妙なことが書かれている(arXiv:0901.0823v1[math.RA] 7 Jan 2009)。
文献を見れば、彼らが相当な専門家であることが分かる。― 上記は要するにゼロ除算を含むいろいろな公理系を建設できるが、幻のようであるが計算に役立つと言っているようである。 きちんと書かれているのは、ゼロ除算が可能であるとは 主張しない ということである。
しかるに、我々はゼロ除算が可能であり、ゼロ除算は我々の数学そのものであると言っている。我々の本質的な原理は、ゼロ除算z/0=0は定義そのものであり、そのように定義し、導入することによって、数学は完全になり、新しい世界を拓くと言っている。いろいろな証拠を挙げて、解説してきた。
しかしながら、それでもなお、1/0 とは何ものかという、思いが残っているかも知れない。 それは数と言えるのだろうかなどの雑念が残っているかも知れない。
このような折り、2015.10.3.山田正人氏が研究室を訪れ、上記の論文とともに氏の考えを夢中で討論した。そのときは、2人ともそんなには気にしなかったのであるが、山田氏は、ゼロ除算を含む 体の構造を入れる方法を説明された。 体とは、四則演算が自由にできる 数学の述語で、 言わば数の資格もつ性質を表している。こうなると、ゼロ除算z/0は代数的にも堂々と数であると言明できることになる。
念を押したいのは、ゼロ除算z/0=0とは定義そのものであり、その定義で、全ての理論は現代数学の中で、新しい世界を展開できるということである。
実際、山田氏の上記の理論から、新しい結果は、何一つ得られない、数学の内容としては自明なものばかりである。
しかしながら、引用された上記論文や、体の概念の重要性から、山田氏の発見された体は 極めて重要であり、数とは 山田氏の発見された体の元、そのものである と言える。
山田氏の発見された、体の構造とは簡単であるが、新規な面白い概念を含んでいるので、内容は 当分は未公開としたい。
極めて面白いのは、y軸の勾配がゼロであるという知見をゼロ除算の帰結として得ていたが、山田氏の上記の考えは、そのことの帰結を微妙な論理で同様に導いている事実である。山田氏の考えには新しい世界観があるのは確かであると言える。
以上


再生核研究所声明262 (2015.12.09) 宇宙回帰説 ― ゼロ除算の拓いた世界観
最近展開しているゼロ除算が、新しい世界観を示しているのは 大変興味深い。直線とは一体どうなっているだろうか.空間とはどのようになっているだろうか。これについて、現代人は、双方向にどこまでも どこまでも 続いている直線を想像するであろう。限りなく広がった平面や空間である。ところが 立体射影によって 平面全体を球面上に1対1に写せば、全平面は 球面から北極を除いた球面上に1対1にきちんと写るから、無限に広がる 全平面の全貌が捉えられる。ところが平面上には存在しない想像上の点 それはあらゆる方向に限りなく遠くに存在する無限遠点の導入によって、その点を球面の欠けた1点北極に対応させれば、無限遠点を含めた平面全体は 球面全体と1対1にきちんと対応する。
このような対応で 平面上の円や直線全体は 球面上では共に円に対応するという美しい対応になり、平面上の直線は 球面上では、北極(無限遠点)を通る円に写ると、直線と円の区別は 球面上では不要になる。また、平面上の平行線とは 無限遠点で 角度ゼロで交わっている(接している)と平面上の構造がよく見えて、無限遠点を含めての平面の全構造が 捉えられる。このように、考えると、直線とは、球面上では北極を通る円、平面上では無限遠点を通る直線となる。この構造は、直線を1方向にどこまでも, どこまでも進めば、無限遠点を 通って、逆方向から戻ってくるという、永劫回帰の思想をちょうど実現している。それは、球面上では、 円を繰り返し回ることを意味する。 その様は 何もかも すっかり良く見える。
これが、従来100年以上も続いた世界観で、関数y=x やW=zは 無限遠点に近づけば、それらの像も無限遠点に近づいていると考えるだろう。 関数y=x の値は正方向にどんどん行けば、どんどん大きくなると考えるだろう。
しかるに、ゼロ除算1/0=0は、それらの関数は無限遠点にいくらでも近づくと 無限遠点にいくらでも近づくが、無限遠点自身では、突然ゼロになっていることが 幾何学的にも確認された。上記、北極は 実は原点ゼロに一致しているという。
話しを簡単にするために、 関数y=x を考えよう。右に行けば、プラス無限に、負の方向左に行けば 負の無限に限りなく近づくは 従来通りである。ところが、ゼロ除算では いずれの方向でも上記無限遠点では 値ゼロをきちんと取っているという。ゼロ除算の数学では、どんどん、増加した先、突然、ゼロ、原点に戻っているという。また、円でも球面でも半径Rをどんどん大きくすると、当然、円の面積や球の体積はどんどん限りなく大きくなるが、半径が無限のとき、突然、それらはゼロになるという。それらの理由も数学ばかりではなく、幾何学的にも明確に見えている。
この数学的な事実は、我々の世界、宇宙がどんどん拡大して行くと突然、ゼロに帰するということを暗示させている。 ― これは 宇宙回帰説を意味しているようである。
これは、ユニバースの普遍的な現象、どんどん進んだ先が、元に突然戻る原理を示しているようである。
そもそも人生とは如何なるものか。― よくは分からないが、事実として、生まれて、どんどん物心がついて、人間として精神活動が活発化して、多くは本能原理によって生かされて、そして、突然元に戻ることを意味しているようである。このことを深く捉えられれば、世界がよりよく観え、悟りの境地に達する大きなヒントを得ることができるだろう。

ここでは ゼロ除算の帰結として、宇宙回帰説、ユニバースの回帰説を唱えたい。この考えでは、どんどん進めば、突然元に戻るという原理を述べている。珠算における 御破算で願いましては で 再び始めることを想起させる。これは、また、reset と同様であると考えられる。

以 上


Title page of Leonhard Euler, Vollständige Anleitung zur Algebra, Vol. 1 (edition of 1771, first published in 1770), and p. 34 from Article 83, where Euler explains why a number divided by zero gives infinity.
https://notevenpast.org/dividing-nothing/

割り算のできる人には、どんなことも難しくない

世の中には多くのむずかしいものがあるが、加減乗除の四則演算ほどむずかしいものはほかにない。

ベーダ・ヴェネラビリス

数学名言集:ヴィルチェンコ編:松野武 山崎昇 訳大竹出版1989年


再生核研究所声明198(2015.1.14) 計算機と人間の違い、そしてそれらの愚かさについて

まず、簡単な例として、割り算、除算の考えを振り返ろう:

声明は一般向きであるから、本質を分かり易く説明しよう。 そのため、ゼロ以上の数の世界で考え、まず、100/2を次のように考えよう:
100-2-2-2-,...,-2.
ここで、2 を何回引けるか(除けるか)と考え、いまは 50 回引いてゼロになるから分数の商は50である。
次に 3/2 を考えよう。まず、
3 - 2 = 1
で、余り1である。そこで、余り1を10倍して、 同様に
10-2-2-2-2-2=0
であるから、10/2=5 となり
3/2 =1+0.5= 1.5
とする。3を2つに分ければ、1.5である。
これは筆算で割り算を行うことを 減法の繰り返しで考える方法を示している。
ところで、 除算を引き算の繰り返しで計算する方法は、除算の有効な計算法がなかったので、実際は日本ばかりではなく、中世ヨーロッパでも計算は引き算の繰り返しで計算していたばかりか、現在でも計算機で計算する方法になっていると言う(吉田洋一;零の発見、岩波新書、34-43)。
計算機は、上記のように 割り算を引き算の繰り返しで、計算して、何回引けるかで商を計算すると言う。 計算機には、予想や感情、勘が働かないから、機械的に行う必要があり、このような手順、アルゴリズムが必要であると考えられる。 これは計算機の本質的な原理ではないだろうか。
そこで、人間は、ここでどのように行うであろうか。 100/2 の場合は、2掛ける何とかで100に近いものでと考え 大抵50は簡単に求まるのでは? 3/2も 3の半分で1.5くらいは直ぐに出るが、 2掛ける1で2、 余り1で、 次は10割る2で 5そこで、1.5と直ぐに求まるのではないだろうか。
人間は筆算で割り算を行うとき、上記で何回引けるかとは 発想せず、何回を掛け算で、感覚的に何倍入っているか、何倍引けるか、と考えるだろう。この人間の発想は教育によるものか、割り算に対して、逆演算の掛け算の学習効果を活かすように 相当にひとりでに学習するのかは極めて面白い点ではないだろうか。この発想には掛け算についての相当な経験と勘を有していなければ、有効ではない。
この簡単な計算の方法の中に、人間の考え方と計算機の扱いの本質的な違いが現れていると考える。 人間の方法には、逆の考え、すなわち積の考えや、勘、経験、感情が働いて、作業を進める点である。 計算機には柔軟な対応はできず、機械的にアルゴリズムを実行する他はない。 しかしながら、 計算機が使われた、あるいは用意された情報などを蓄積して、どんどんその意味における経験を豊かにして、求める作業を効率化しているのは 広く見られる。 その進め方は、対象、問題によっていろいろなアルゴリズムで 具体的には 複雑であるが、しかし、自動的に確定するように、機械的に定まるようになっていると考えられる ― 厳密に言うと そうではない考えもできる、すなわち、ランダムないわゆる 乱数を用いるアルゴリズムなどはそうとは言えない面もある ― グーグル検索など時間と共に変化しているが、自動的に進むシステムが構築されていると考えられる。 それで、蓄積される情報量が人間の器、能力を超えて、計算機は 人間を遥かに超え、凌ぐデータを扱うことが可能である事から、そのような学習能力は、人間のある能力を凌ぐ可能性が高まって来ている。 将棋や碁などで プロの棋士を凌ぐほどになっているのは、良い例ではないだろうか。もちろん、この観点からも、いろいろな状況に対応するアルゴリズムの開発は、計算機の進化において 大きな人類の課題になるだろう。

他方、例えば、幼児の言葉の学習過程は 神秘的とも言えるもので、個々の単語やその意味を1つずつ学習するよりは 全体的に感覚的に自動的にさえ学習しているようで、学習効果が生命の活動のように柔軟に総合的に進むのが 人間の才能の特徴ではないだろうか。

さらに、いくら情報やデータを集めても、 人間が持っている創造性は 計算機には無理のように見える。 創造性や新しい考えは 無意識から突然湧いてくる場合が多く、 創造性は計算機には無理ではないだろうか。 そのことを意識したわけではないが、人間の尊厳さを 創造性に 纏めている:

再生核研究所声明181(2014.11.25) 人類の素晴らしさ ― 7つの視点

そこでも触れているが、信仰や芸術、感情などは生命に結び付く高度な存在で、科学も計算機もいまだ立ち入ることができない世界として、生命に対する尊厳さを確認したい。

しかしながら、他方、人間の驚くべき 愚かさにも自戒して置きたい:
発想の転換、考え方の変更が難しいということである。発想の転換が 天動説を地動説に変えるのが難しかった世界史の事件のように、また、非ユークリッド幾何学を受け入れるのが大変だったように、実は極めて難しい状況がある。人間が如何に予断と偏見に満ち、思い込んだら変えられない性(さが) が深いことを 絶えず心しておく必要がある: 例えば、ゼロ除算は 千年以上も、不可能であるという烙印のもとで、世界史上でも人類は囚われていたことを述べていると考えられる。世界史の盲点であったと言えるのではないだろうか。 ある時代からの 未来人は 人類が 愚かな争いを続けていた事と同じように、人類の愚かさの象徴 と記録するだろう。 数学では、加、減、そして、積は 何時でも自由にできた、しかしながら、ゼロで割れないという、例外が除法には存在したが、ゼロ除算の簡潔な導入によって、例外なく除算もできるという、例外のない美しい世界が実現できた(再生核研究所声明180(2014.11.24) 人類の愚かさ― 7つの視点)。そこで、この弱点を克服する心得を次のように纏めている:
再生核研究所声明191(2014.12.26) 公理系、基本と人間
以 上


ゼロ除算は1+1より優しいです。 何でも0で割れば、0ですから、簡単で美しいです。 1+1=2は 変なのが出てくるので難しいですね。











AD

0 件のコメント:

コメントを投稿