\documentclass[12pt]{article} \usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm} \numberwithin{equation}{section} \begin{document} \title{\bf Announcement 300: New challenges on the division by zero z/0=0\\ (2016.05.22)} \author{{\it Institute of Reproducing Kernels}\\ Kawauchi-cho, 5-1648-16,\\ Kiryu 376-0041, Japan\\
%\date{\today} \maketitle {\bf Abstract: } In this announcement, for its importance we would like to state the situation on the division by zero and propose basic new challenges.
\bigskip \section{Introduction} %\label{sect1} By a {\bf natural extension} of the fractions \begin{equation} \frac{b}{a} \end{equation} for any complex numbers $a$ and $b$, we found the simple and beautiful result, for any complex number $b$ \begin{equation} \frac{b}{0}=0, \end{equation} incidentally in \cite{s} by the Tikhonov regularization for the Hadamard product inversions for matrices and we discussed their properties and gave several physical interpretations on the general fractions in \cite{kmsy} for the case of real numbers.
The division by zero has a long and mysterious story over the world (see, for example, Google site with the division by zero) with its physical viewpoints since the document of zero in India on AD 628, however, Sin-Ei Takahasi (\cite{kmsy}) established a simple and decisive interpretation (1.2) by analyzing the extensions of fractions and by showing the complete characterization for the property (1.2):
\bigskip
{\bf Proposition 1. }{\it Let F be a function from ${\bf C }\times {\bf C }$ to ${\bf C }$ satisfying $$ F (b, a)F (c, d)= F (bc, ad) $$ for all $$ a, b, c, d \in {\bf C } $$ and $$ F (b, a) = \frac {b}{a }, \quad a, b \in {\bf C }, a \ne 0. $$ Then, we obtain, for any $b \in {\bf C } $ $$ F (b, 0) = 0. $$ }
Note that the complete proof of this proposition is simply given by 2 or 3 lines.
\medskip We thus should consider, for any complex number $b$, as (1.2); that is, for the mapping \begin{equation} w = \frac{1}{z}, \end{equation} the image of $z=0$ is $w=0$ ({\bf should be defined}). This fact seems to be a curious one in connection with our well-established popular image for the point at infinity on the Riemann sphere. Therefore, the division by zero will give great impacts to complex analysis and to our ideas for the space and universe.
However, the division by zero (1.2) is now clear, indeed, for the introduction of (1.2), we have several independent approaches as in:
\medskip 1) by the generalization of the fractions by the Tikhonov regularization or by the Moore-Penrose generalized inverse,
\medskip 2) by the intuitive meaning of the fractions (division) by H. Michiwaki,
\medskip 3) by the unique extension of the fractions by S. Takahasi, as in the above,
\medskip 4) by the extension of the fundamental function $W = 1/z$ from ${\bf C} \setminus \{0\}$ into ${\bf C}$ such that $W =1/z$ is a one to one and onto mapping from $ {\bf C} \setminus \{0\} $ onto ${\bf C} \setminus \{0\}$ and the division by zero $1/0=0$ is a one to one and onto mapping extension of the function $W =1/z $ from ${\bf C}$ onto ${\bf C}$,
\medskip and
\medskip
5) by considering the values of functions with the mean values of functions. \medskip
Furthermore, in (\cite{msy}) we gave the results in order to show the reality of the division by zero in our world:
\medskip
\medskip A) a field structure containing the division by zero --- the Yamada field ${\bf Y}$,
\medskip B) by the gradient of the $y$ axis on the $(x,y)$ plane --- $\tan \frac{\pi}{2} =0$, \medskip
C) by the reflection $W =1/\overline{z}$ of $W= z$ with respect to the unit circle with center at the origin on the complex $z$ plane --- the reflection point of zero is zero, \medskip
and \medskip
D) by considering rotation of a right circular cone having some very interesting phenomenon from some practical and physical problem.
\medskip
In (\cite{mos}), many division by zero results in Euclidean spaces are given and the basic idea at the point at infinity should be changed. In (\cite{ms}), we gave beautiful geometrical interpretations of determinants from the viewpoint of the division by zero. The results show that the division by zero is our basic and elementary mathematics in our world.
\medskip
See J. A. Bergstra, Y. Hirshfeld and J. V. Tucker \cite{bht} for the relationship between fields and the division by zero, and the importance of the division by zero for computer science. It seems that the relationship of the division by zero and field structures are abstract in their paper.
Meanwhile, J. P. Barukcic and I. Barukcic (\cite{bb}) discussed recently the relation between the divisions $0/0$, $1/0$ and special relative theory of Einstein. However, their logic seems to be curious and their results contradict with ours.
Furthermore, T. S. Reis and J.A.D.W. Anderson (\cite{ra,ra2}) extend the system of the real numbers by introducing an ideal number for the division by zero $0/0$.
Meanwhile, we should refer to up-to-date information:
{\it Riemann Hypothesis Addendum - Breakthrough
Kurt Arbenz https://www.researchgate.net/publication/272022137 Riemann Hypothesis Addendum - Breakthrough.}
\medskip
Here, we recall Albert Einstein's words on mathematics: Blackholes are where God divided by zero. I don't believe in mathematics. George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]: 1. Gamow, G., My World Line (Viking, New York). p 44, 1970.
For our ideas on the division by zero, see the survey style announcements 179,185,237,246,247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252,ann293}).
\section{On mathematics} Apparently, the division by zero is a great missing in our mathematics and the result (1.2) is definitely determined as our basic mathematics, as we see from Proposition 1. Note its very general assumptions and many fundamental evidences in our world in (\cite{kmsy,msy,mos}). The results will give great impacts on Euclidean spaces, analytic geometry, calculus, differential equations, complex analysis and physical problems. See our announcements for the details.
The mysterious history of the division by zero over one thousand years is a great shame of mathematicians and human race on the world history, like the Ptolemaic system (geocentric theory). The division by zero will become a typical symbol of foolish human race with long and unceasing struggles. Future people will realize this fact as a definite common sense.
We should check and fill our mathematics, globally and beautifully, from the viewpoint of the division by zero. Our mathematics will be more perfect and beautiful, and will give great impacts to our basic ideas on the universe.
\section{Albert Einstein's biggest blunder} The division by zero is directly related to the Einstein's theory and various physical problems containing the division by zero. Now we should check the theory and the problems by the concept of the RIGHT and DEFINITE division by zero. Now is the best time since 100 years from Albert Einstein. It seems that the background knowledge is timely fruitful.
\section{Computer systems} The above Professors listed are wishing the contributions in order to avoid the zero division trouble in computers. Now, we should arrange new computer systems in order not to meet the division by zero trouble in computer systems.
\section{General ideas on the universe} The division by zero may be related to religion, philosophy and the ideas on the universe, and it will creat a new world. Look the new world.
\bigskip
We are standing on a new generation and in front of the new world, as in the discovery of the Americas.
\bibitem{bb} J. P. Barukcic and I. Barukcic, Anti Aristotle—The Division of Zero by Zero. Journal of Applied Mathematics and Physics, {\bf 4}(2016), 749-761. doi: 10.4236/jamp.2016.44085.
\bibitem{bht} J. A. Bergstra, Y. Hirshfeld and J. V. Tucker, Meadows and the equational specification of division (arXiv:0901.0823v1[math.RA] 7 Jan 2009).
\bibitem{cs} L. P. Castro and S. Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy} M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane, New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$, Int. J. Appl. Math. {\bf 27} (2014), no 2, pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{ms} T. Matsuura and S. Saitoh, Matrices and division by zero $z/0=0$, Linear Algebra \& Matrix Theory (ALAMT)(to appear).
\bibitem{msy} H. Michiwaki, S. Saitoh, and M.Yamada, Reality of the division by zero $z/0=0$. IJAPM International J. of Applied Physics and Math. {\bf 6}(2015), 1--8. http://www.ijapm.org/show-63-504-1.html
\bibitem{mos} H. Michiwaki, H. Okumura, and S. Saitoh, Division by Zero $z/0 = 0$ in Euclidean Spaces. International Journal of Mathematics and Computation (in press).
\bibitem{ra} T. S. Reis and J.A.D.W. Anderson, Transdifferential and Transintegral Calculus, Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I WCECS 2014, 22-24 October, 2014, San Francisco, USA
\bibitem{ra2} T. S. Reis and J.A.D.W. Anderson, Transreal Calculus, IAENG International J. of Applied Math., {\bf 45}(2015): IJAM 45 1 06.
\bibitem{s} S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. {\bf 4} (2014), no. 2, 87--95. http://www.scirp.org/journal/ALAMT/
\bibitem{ttk} S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics, {\bf 38}(2015), no. 2, 369-380.
\bibitem{ann179} Announcement 179 (2014.8.30): Division by zero is clear as z/0=0 and it is fundamental in mathematics.
\bibitem{ann185} Announcement 185 (2014.10.22): The importance of the division by zero $z/0=0$.
\bibitem{ann237} Announcement 237 (2015.6.18): A reality of the division by zero $z/0=0$ by geometrical optics.
\bibitem{ann246} Announcement 246 (2015.9.17): An interpretation of the division by zero $1/0=0$ by the gradients of lines.
\bibitem{ann247} Announcement 247 (2015.9.22): The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$.
\bibitem{ann250} Announcement 250 (2015.10.20): What are numbers? - the Yamada field containing the division by zero $z/0=0$.
\bibitem{ann252} Announcement 252 (2015.11.1): Circles and curvature - an interpretation by Mr. Hiroshi Michiwaki of the division by zero $r/0 = 0$.
\bibitem{ann281} Announcement 281(2016.2.1): The importance of the division by zero $z/0=0$.
\bibitem{ann282} Announcement 282(2016.2.2): The Division by Zero $z/0=0$ on the Second Birthday.
\bibitem{ann293} Announcement 293(2016.3.27): Parallel lines on the Euclidean plane from the viewpoint of division by zero 1/0=0.
これらの成果を日本数学会代数学分科会で発表し、また、ゼロ除算の解説(2015.1.14)を1000部印刷広く配布してきた。2年間の時間の経過とともに我々の数学として、実在感が確立してきた。その後、広範にゼロ除算がいろいろなところに現れていることが沢山発見され、やがて、ゼロ除算は自明であり数学の初歩的な欠落部分であるとの確信を深めるようになってきている。 単に数学の理論だけでなく、いろいろな具体例が認識の有り様を、感性を変えることが分かる。そこで、何もかも分かったという心境に至るには、素朴な具体例で、何もかも当たり前であるという心理状況に至ることが大事であるが、それは、環境で心自体が変わる様をしめしている。本来1つの論文であった原稿は 招待されたため次の2つの論文に出版される: (2016) Matrices and Division by Zero z/0 = 0. Advances in Linear Algebra & Matrix Theory, 6, 51-58. http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007 Division by Zero z/0 = 0 in Euclidean Spaces: International Journal of Mathematics and Computation 9 Vol. 28; Issue 1, 2017)。