2015年11月26日木曜日

地球内部の不連続面

地球内部の不連続面

地球の内部の不連続面は地震波(自然の地震や地下核実験による爆破の震動)の伝播状況を観測することによって発見されました。
地球の内部を伝わる波には実体波とよばれるP波とS波がありますが、S波は液体中を伝播することはできません。震央から観測点までの距離を横軸に、震源から観測点に到達する時間を縦軸にして多くの観測データをプロットすると距離と伝播時間の関係を示す走時曲線が得られ、これからP波とS波の速度分布が求められます。
地球の大構造を示す不連続面にはコンラッド不連続面、モホロビチッチ不連続面、グーテンベルグ不連続面、レーマン面があり、プレートの沈み込みを示す深発地震面があります。
現在では地震波トモグラヒィーの解析技術(画像化)により、地球を輪切りにした構造やマントル内の不均一構造などが視覚的に捉えられるようになっています。
コンラッド不連続面

大陸地殻を2つに分けたときの境界面。花崗岩質層と玄武岩質層の境界ではないかと考えられていますが確かではありません。

モホロビチッチ不連続面(モホ面)

地殻とマントルの境界面。深さは大洋底で6km前後、大陸で30~50km程度。日本列島の下では約30km。
グーテンベルグ不連続面

マントルと外核の境界面で深さは2,900km。この不連続面を越えるとS波が伝わらないことから液体であることが判明しました。
レーマン面

外殻と内核の境界面で深さは5,100km。外殻が液体で内核は固体です。内核は隕石との比較から鉄とニッケルの合金であると考えられています。
深発地震面(和達・ベニオフゾーン)

日本付近、特に東北日本においては深発地震およびやや深発地震の発生するゾーンは海溝から日本列島の下に向かって分布しています。このゾーンを深発地震面と呼びます。これは海溝から沈み込む海洋プレートの形状を表しています。東北日本の日本海溝から沈み込む深発地震面は30度の単一傾斜で深さ600km付近まで追跡されていますが、そのほかの海溝での深発地震面は傾斜が変わる、途切れているなどいろいろな形状を示しており、島弧-海溝の構造は単純ではないとされています。http://www5d.biglobe.ne.jp/~kabataf/yougo/C_kouzou/kouzou_discon.htm


\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}


\numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 258: A new viewpoint of the division by zero $z/0=0$ from area and the point at infinity
}

\author{{\it Institute of Reproducing Kernels}\\
}

\date{November 26, 2015}

\maketitle
{\bf Abstract: } In this announcement, we will state a reality of the division by zero $z/0=0$ from the viewpoint of area and the point at infinity. We will be able to see a great impact for the idea of our space. 

\bigskip
{\bf Introduction}

\bigskip

%\label{sect1}
By {\bf a natural extension of the fractions}
\begin{equation}
\frac{b}{a}
\end{equation}
for any complex numbers $a$ and $b$, the division by zero
\begin{equation}
\frac{b}{0}=0, 
\end{equation}
is clear and trivial. See (\cite{msy}) for the recent results. See also the survey style announcements 179,185,237,246,247,250 and 252 of the Institute of Reproducing Kernels (\cite{ann179,ann185,ann237,ann246,ann247,ann250,ann252}). The division by zero is not only mathematical problems, but also it will give great impacts to human beings and the idea on the universe. The Institute of Reproducing Kernels is presenting various opinions in Announcements (many in Japanese) on the universe.

In this Announcement, we will refer to a new viewpoint of the division by zero in the Euclidean space from area and the point at infinity. In our common level, the results will be very surprized for many peopule.

\section{The point at infinity}

We will be able to see the whole Euclidean plane by the stereographic projection onto the Riemann sphere. The behavior of the space around the point at infinity may be considered by that around the origin by the linear transform $W = 1/z$(\cite{ahlfors}). We thus see that

\begin{equation}
\lim_{z \to \infty} z = \infty,
\end{equation}
however,
\begin{equation}
[z]_{z =\infty} =0,
\end{equation}
by the division by zero. The difference of (1.1) and (1.2) is very important as we see clearly from the function $1/z$ and the behavior at the origin. The limiting value to the origin and the value at the origin are different. For the surprising results, we will state the property in the real space as follows:
\begin{equation}
\lim_{x\to +\infty} x =+\infty , \quad \lim_{x\to -\infty} x = -\infty,
\end{equation}
however,
\begin{equation}
[x]_{ +\infty } =0, \quad [x]_{ -\infty } =0.
\end{equation}

\section{Interpretation by area}

In orde to see some realization of the properties of (1.3) and (1.4), we will consider the triangle with the basic edge (side) $a$ and high $h$. Then, the area $S$ of the triangle is given
by
\begin{equation}
S = \frac{1}{2} ah.
\end{equation}
By fixing the high $h$ and the line containing the side $a$, we will consider the limit $a \to +\infty$. Then, of course,
\begin{equation}
\lim_{a \to +\infty} S = +\infty.
\end{equation}
However, we will see that
\begin{equation}
[S]_{a=\infty} =0,
\end{equation} 
just like the division by zero, because, when $a=\infty$, the triangle is broken,
we cannot consider the area of the triangle. Here, the notation $a=\infty$ is not good, however, its meaning is clear; it will mean the case of the parallel lines of the line containing the side $a$ and the line through the fixed vertex of the triangles when we consider $a$ tends to $+\infty$. 

The strong discontinuity of the division by zero is appeared as the broken of the triangles.
These phenomena may be looked in many situations as the unverse one.
We can consider similar problems for many types volumes. However, the simplest cases are
disc and sphere (ball) with radius $1/R$. When $R \to +0$, the areas and volumes tend to $+\infty$, however, when $R=0$, they are zero, because they become the half-plane and half-space, respectively.

\bigskip

\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{ahlfors}
Ahlfors, L. V. (1966). {\it Complex Analysis}. McGraw-Hill Book Company.

\bibitem{bht}
Bergstra, J. A., Hirshfeld Y., \& Tucker, J. V. (2009).
{\it Meadows and the equational specification of division} (arXiv:0901.0823v1[math.RA] 7 Jan) .

\bibitem{cs}
Castro, L. P., \& Saitoh, S. (2013).
Fractional functions and their representations. {\it Complex Anal. Oper. Theory {\bf7}, no. 4, }1049-1063. 

\bibitem{kmsy}
Kuroda, M., Michiwaki, H., Saitoh, S.,\& Yamane, M. (2014).
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
{\it Int. J. Appl. Math. Vol. 27, No 2 }, 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{msy}
Michiwaki H., Saitoh S., \& Yamada M. (2015).
Reality of the division by zero $z/0=0$. IJAPM (International J. of Applied Physics and Math. (to appear).

\bibitem{mst}
Michiwaki, H., Saitoh, S., \& Takagi, M.
A new concept for the point at infinity and the division by zero z/0=0 
(manuscript).

\bibitem{s}
Saitoh, S. (2014).
Generalized inversions of Hadamard and tensor products for matrices,
{\it Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 , 87-95.} http://www.scirp.org/journal/ALAMT/ 

\bibitem{taka}
Takahasi, S.-E. (2014).
{On the identities $100/0=0$ and $ 0/0=0$.}
(note)

\bibitem{ttk}
Takahasi, S.-E., Tsukada, M., \& Kobayashi, Y. (2015).
{\it Classification of continuous fractional binary operations on the real and complex fields. } Tokyo Journal of Mathematics {\bf 8}, no.2(in press).

\bibitem{ann179}
Division by zero is clear as z/0=0 and it is fundamental in mathematics. {\it Announcement 179 (2014.8.30).}

\bibitem{ann185}
The importance of the division by zero $z/0=0$. {\it Announcement 185 (2014.10.22)}.

\bibitem{ann237}
A reality of the division by zero $z/0=0$ by geometrical optics. {\it Announcement 237 (2015.6.18)}.

\bibitem{ann246}
An interpretation of the division by zero $1/0=0$ by the gradients of lines. {\it Announcement 246 (2015.9.17)}.

\bibitem{ann247}
The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$. {\it Announcement 247 (2015.9.22)}.

\bibitem{ann250}
What are numbers? - the Yamada field containing the division by zero $z/0=0$. {\it Announcement 250 (2015.10.20)}.

\bibitem{ann252}
Circles and curvature - an interpretation by Mr. Hiroshi Michiwaki of the division by
zero $r/0 = 0$. {\it Announcement 252 (2015.11.1)}.

\end{thebibliography}



\end{document}


再生核研究所声明257 (2015.11.05) 無限大とは何か、 無限遠点とは何か ー 新しい視点 
(道脇さんたちの、和算の伝統を感じさせるような、何とも 言えない魅力 がありますね。 添付のように完成させたい。例の専門家たち、驚いて対応を検討しているのでは?どんどん、事情がみえてきました. 今朝の疑問も きれいに散歩中 8時15分 ころ、解決できました.成文化したい。2015.11.1.9:7
無限遠点の値の意味を 約1年半ぶりに 神は関数値を平均値として認識する で 理解できました。今、気になるのは,どうして、正の無限 負の無限、および ゼロが近いのかです。その近いという意味を、 正確に理解できない。 近い事実は 添付する 電柱の左右の傾きに現れている。
log 0=0
と定義するのが 自然ですが、それには、 ゼロと マイナス無限大 が一致しているとも言える。 そのところが 不明、何か新しい概念、考え 哲学が 求められている???
2015.11.1.05:50)

ローラン展開の正則部の値の解釈のように(再生核研究所声明255 (2015.11.03) 神は、平均値として関数値を認識する)、実は当たり前だったのに、認識がおかしかったことに気づいたので、正確に表現したい。
まず、正の無限大とは何だろうか。 1,2,3,…… といけば、正の整数は 正の無限大に収束、あるいは発散すると表現するだろう。 この正確な意味は イプシロン、デルタ論法という表現で厳格に表現される。すなわち、 どんなに大きな 整数 n をとっても、あるN を取れば(存在して)、N より大の 全ての整数 m に対して、n < m が成り立つと定義できる。 いろいろな設定で、このようにして、無限は定義できる。 どんなに大きな数に対しても、より大の整数が存在する。 それでは、+∞ とは何だろうか。 限りなく大きな数の先を表す概念であることが分かる。 大事な視点は +∞は 定まった数ではなくて、極限で考えられたもので、近づいていく先を表した状況で考えられていることである。 これらの概念は極限の概念として、現代数学で厳格に定義され、その概念は新しいゼロ除算の世界でも、全て適切で、もちろん正しい。
簡単な具体例で説明しよう。 関数y=1/x のグラフはよく知られているように、正の実軸からゼロに近づけば、+∞に発散し、負からゼロに近づけば、-∞に発散する。 ところが、原点では、既に述べてきたように、その関数値はゼロである。 この状況を見て、0、+∞、-∞ らが近い、あるいは 一致していると誤解してはならない。+∞、-∞  らは数ではなく、どんどん大きくなる極限値や、どんどん小さくなる極限値を表しているのであって、それらの先、原点では突然にゼロにとんでいる 強力な不連続性を示しているのである。
複素解析における無限遠点も同様であって、立体射影で複素平面はリーマン球面に射影されるが、無限遠点とは あらゆる方向で原点から限りなく遠ざかった時に、想像上の点が存在するとして、その射影としてりーマン球面上の北極を対応させる。 関数W=1/z は原点でその点が対応すると、解析関数論では考え、原点で一位の極をとると表現してきた。
しかしながら、新しく発見されたゼロ除算では、1/0=0 であり 原点には、ゼロが対応すると言っている。 これは矛盾ではなくて、上記、一位の極とは、原点に近づけは、限りなく無限遠点に近づく、あるいは発散するという、従来の厳格議論はそのままであるが、ゼロ除算は、原点自身では、数としてゼロの値をきちんとして取っているということである。 この区別をきちんとすれば、従来の概念とゼロ除算はしっかりとした位置づけができる。 近づく値とそこにおける値の区別である。

以 上


再生核研究所声明251(2015.10.27) 円と曲率 ―ゼロ除算z/0=0から導かれる道脇裕氏の解釈
(再生核研究所は ゼロ除算の研究を推進している。特に研究は初期段階にあるので ゼロ除算の実在感の観点からの考察を進めている。そのような折り、道脇裕氏が2015.9.3. 付け文書を送って来たので、要点を纏めて置きたい。)

底円の半径がr_2である直円錐を考える。 それを半径r_1 の底円に平行な円で切る。2つの円板の間の距離をdとする。 このとき、直円錐の頂点と底円板の間の 直円錐の表面上での 距離RはEM半径と呼ばれ、道脇愛羽(8歳)さん が計算され、

R=r_2/(r_2-r_1 ) √(d^2+(r_2-r_1 )^2 )

となる。これは2つの円板で囲まれた部分の 平面上での回転を考えたときに、底円が描く円の半径を計算されたものである。
半径Rの円の曲率はK=K(R)=1/Rで定義される。いま、r_1 がr_2 に近づいた場合を考える。もちろん、d を一定にしてである。まず、極限値を考えれば、Rは無限大に発散して、底円が描く円は 直線に近づき、実際、r_1 = r_2の時は 底円が描く円は直線になり、回転体は直線運動を行うことが分かる。
ところがゼロ除算は、r_1 =r_2のとき、Rがゼロであることを言っているが、それは、何を意味するだろうか。ゼロ除算は K=K(R)=1/R がR=0 でゼロと言っているから、その時の曲率がゼロ、すなわち、極限の場合と同様に、底円が描く円は直線になり、回転体は直線運動を行うことを述べている。
いまの場合、極限で考えた極限値とゼロ除算、すなわち、R=0自身の結果が同じことを述べている。
この現象は、ゼロ除算が現実の現象を良く表現しているものと考えられる。

同時に、半径ゼロの円(点)の曲率がゼロである ことをよく、表している。
上記、回転体の運動の例は、ゼロ除算の強力な不連続性をよく捉えたものとして、大変面白いのではないだろうか。

以 上


再生核研究所声明249(2015.10.20)数とは何か ― ゼロ除算z/0=0を含む
(数とは、ゼロ除算z/0=0を含む 山田正人 体の元のことである:
2015.10.16.07:30 小雨の中、興奮しながら散歩していた。 その時、 上記のような直観が確信をもって、熱く閃いた。複素数体に対して、山田体を広く用いるべきである。 そこでは、例外なく逆数が定義され、言わば完備化空間のように完全になり、ゼロ除算の世界が拓かれてくる。
2015.10.16.08:12)

ゼロ除算z/0=0は 分数の自然な拡張として既に1+1=2のように自明であり、しかもそれは、我々の数学そのものであり、自然現象もきちんと表している。しかしながら、永い間の偏見の世界史、それも千年を超える偏見であり、天才的な数学者たちの足跡を省みて、中々世の中で理解されない状況があるのは、世の関係サイトを見ても良く分かる。それらには、そもそもゼロに対する恐怖心とゼロ除算にからむ、不可思議で奇妙な論調を見ることができる。
ゼロ除算のこのような歴史は、やがて人類の愚かさの象徴であると世界史で記録されるだろう。
1/0 とは何だと、恐怖心を抱く者は 尚世に多い状態と言える。公理論的に吟味したか、現代数学とは違う、変な世界の数学ではないか、数学的に正しくともそのような変な数学が大きな意味を持つはずがない等と 特に優秀な人たちが述べて来たのは大変興味深い事実である。
最近、数学基礎論、公理論、計算機科学の専門家たちのゼロ除算に関する論文を発見した
Meadows and the equational specification of division
J A Bergstra,Y Hirshfeld and J V Tucker
が、結論ではとにかく、奇妙なことが書かれている(arXiv:0901.0823v1[math.RA] 7 Jan 2009)。
文献を見れば、彼らが相当な専門家であることが分かる。― 上記は要するにゼロ除算を含むいろいろな公理系を建設できるが、幻のようであるが計算に役立つと言っているようである。 きちんと書かれているのは、ゼロ除算が可能であるとは 主張しない ということである。
しかるに、我々はゼロ除算が可能であり、ゼロ除算は我々の数学そのものであると言っている。我々の本質的な原理は、ゼロ除算z/0=0は定義そのものであり、そのように定義し、導入することによって、数学は完全になり、新しい世界を拓くと言っている。いろいろな証拠を挙げて、解説してきた。
しかしながら、それでもなお、1/0 とは何ものかという、思いが残っているかも知れない。 それは数と言えるのだろうかなどの雑念が残っているかも知れない。
このような折り、2015.10.3.山田正人氏が研究室を訪れ、上記の論文とともに氏の考えを夢中で討論した。そのときは、2人ともそんなには気にしなかったのであるが、山田氏は、ゼロ除算を含む 体の構造を入れる方法を説明された。 体とは、四則演算が自由にできる 数学の述語で、 言わば数の資格もつ性質を表している。こうなると、ゼロ除算z/0は代数的にも堂々と数であると言明できることになる。
念を押したいのは、ゼロ除算z/0=0とは定義そのものであり、その定義で、全ての理論は現代数学の中で、新しい世界を展開できるということである。
実際、山田氏の上記の理論から、新しい結果は、何一つ得られない、数学の内容としては自明なものばかりである。
しかしながら、引用された上記論文や、体の概念の重要性から、山田氏の発見された体は 極めて重要であり、数とは 山田氏の発見された体の元、そのものである と言える。
山田氏の発見された、体の構造とは簡単であるが、新規な面白い概念を含んでいるので、内容は 当分は未公開としたい。
極めて面白いのは、y軸の勾配がゼロであるという知見をゼロ除算の帰結として得ていたが、山田氏の上記の考えは、そのことの帰結を微妙な論理で同様に導いている事実である。山田氏の考えには新しい世界観があるのは確かであると言える。
以上

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 247: The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$}

\author{{\it Institute of Reproducing Kernels}\\


\date{September 22, 2015}

\maketitle
In Announcement 246, we stated:

\medskip
Consider the lines $y = ax$ with gradients $a$ through the origin $ 0$. Consider the two limits that $a \quad (>0)$ tends to $ + \infty$ and $a \quad (<0)$ tends to $- \infty$, respectively. As their limits, we see that the limiting lines are $y$ — axis. Note that the gradient of the $y$ axis is zero, not infinity.
This example shows as in the graph of the function $y = f(x) = 1/x$ at $x = 0$ as $f(0) =0$, that was introduced by the division by zero $1/0=0$ mathematically (\cite{s,kmsy,ttk,ann}).
\medskip

For this announcement, Professor H. Begehr kindly referred to the gradient of the $y$ axis in the above: If the gradient of the imaginary axis is $0$ this would mean $\tan (\pi/2)=0$,
right? Of course this would be a consequence of $1/0=0$!
\medskip

We had sent the e-mail, soon as follows:
\medskip

For the gradient of $y$ axis, we can define it as zero, very naturally and in the intuitive sense; of course, we can give its definition precisely.
However, as you stated, we can derive it formally by the division by zero $1/0=0$; this deduction will be very interested in itself, because, the formal result $1/0=0$ is coincident with the natural sense.
\medskip

The gradients of y axis and x axis are both zero.
\medskip

Surprisingly enough, this would mean $\tan (\pi/2)=0$,
right?
THIS IS RIGHT for our sense; we gave the definition of the values for analytic functions at an isolated singular point:

\medskip
{\bf Theorem :} {\it Any analytic function takes a definite value at an isolated singular point }{\bf with a natural meaning.} The definite value is given by the first coefficient of the regular part in the Laurent expansion around the isolated singular point (\cite{ann}).
\medskip

As the fundamental results, we would like to state that

\medskip
{\huge \bf I) The gradient of the y axis is zero,}
\medskip

and
\medskip

{\huge \bf II) $\tan \frac{\pi}{2} = 0,$}
\medskip

in the sense of the division by zero in our sense.
\medskip

Note that the function $y = \tan x$ is similar with the function $y = 1/x$ around $x = \frac{\pi}{2}
$ and $ x = 0$, respectively.

\footnotesize
\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields, Tokyo Journal of Mathematics (in press).

\bibitem{ann}
Announcement 185: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.

\end{thebibliography}

\end{document}










0 件のコメント:

コメントを投稿