2015年11月26日木曜日

古代ギリシャの「失われた島」を発見、エーゲ海 アテナイとスパルタの歴史的な大戦に巻き込まれた伝説の島 2015.11.26

古代ギリシャの「失われた島」を発見、エーゲ海
アテナイとスパルタの歴史的な大戦に巻き込まれた伝説の島
2015.11.26


この半島の一部はその昔、有名な戦いに巻き込まれた古代都市ケインであったとみられる。(Photograph by German Archaeological Institute)

 エーゲ海東部で調査を行っていた考古学者と地球物理学者の国際チームが、これまで所在が不明だった、かつて古代都市ケインがあった島を発見した。

 古代ギリシャの歴史家クセノフォンが文献に記したこの島は、ペロポネソス戦争末期の紀元前406年、アテナイ軍がスパルタ軍を破ったアルギヌサイの戦いが行われた場所のすぐ近くにあったことで知られる。

 現在はギャリップ諸島と呼ばれているアルギヌサイの島々は、トルコの海岸の沖わずか数百メートルほどの位置に浮かんでいる。古代の文献では3つの島からなるとされているが、これまでは3番目の島がどこにあるのかがわかっていなかった。

 研究チームが、現在は半島となっている土地を掘削して得た地層サンプルを調べたところ、そこがかつては島であったことが確かめられた。中世末期以前のどこかの時点で、島と本土との間に陸地が形成されたものとみられる。16世紀のオスマン帝国の地図では、この島がすでに半島の一部となっていることがわかっている。


 おそらくは島と本土の間を隔てる狭い海峡に、本土にあった畑が侵食されたり地震によって土が流れ出て堆積していったのだろう。

 トルコ、イスタンブールにあるドイツ考古学研究所のフェーリクス・ピルソン氏によると、研究チームはこの先、放射性炭素年代測定法を使って地層の年代を特定し、こうした作用がどのように進んだのかをより詳細に調べる予定だという。(参考記事:「ベルリンとアテネ 二つの欧州」)

 さらに現場付近の海中ではヘレニムズ時代(紀元前323年~紀元前31年)に造られた港跡も発見されており、この半島がかつて島だったことを裏付けている。

歴史に残る「苦い勝利」

 ケインは大きな街ではなかったが、黒海からトルコの南岸に沿って続く戦略上重要な海上交易ルートの上に位置しており、嵐を逃れた船が立ち寄れる大きな港も擁していた。

 過去の調査では島から陶器が発掘され、どんな交易ルートが形成されていたのかを探る手がかりとなった。そして現在は、付近のエライア港まで船で運ばれてきたと見られる黒海に特有の微生物も、交易ネットワークの存在を示すさらなる証拠とされている。(参考記事:「地中海で大量の沈没船が見つかる、ギリシャ沖」)

「古典的な考古学は、たとえば20年前に比べると、はるかに複雑になっています。今は緻密な技術をいくつも駆使して、周囲の環境からの影響を調べることができるのです」とピルソン氏は言う。

 アルギヌサイの戦いは、アテナイにとって苦い勝利となった。彼らはスパルタ軍を破ったものの、直後に襲ってきた嵐のせいで、すでに船を破壊されていたアテナイ兵を救助することができなかった。勝利を携えて帰郷した将軍たちを、アテナイ市民は兵士たちを救えなかったことで責め立て、投票によって彼らの処刑を決めた。


古代都市ケインは、その付近でアルギヌサイの海戦が行われたことで知られる。この戦いでは、船を従来の一列ではなく二列に配置するなどの斬新な戦術によって、アテナイ軍がスパルタ軍を破っている。(Photograph by German Archaeological Institute)
[画像のクリックで拡大表示]
「この一件はアテナイ軍司令官の士気を低下させ、間接的に1年後の完全な敗北を招きました」と米コーネル大学で古代史を研究するバリー・ストラウス氏は言う。

 英ケンブリッジ大学のポール・カートリッジ氏もまた、アテナイ市民の復讐心が最終的な没落を呼び込んだと語る。「民主都市国家アテナイは、せっかくの勝利をわざわざ敗北に変えてしまいました。8名の戦勝司令官を全員裁判にかけ、その全員を不法に処刑したのです」

 アルギヌサイの戦いで使われた木造船の痕跡が今も残っている可能性は低いが、研究チームは掘削で得られたサンプルを元に年表を作り、そのデータを歴史的な資料と組み合わせながら、一帯の広範な海上交易ネットワークについて探っていく予定だという。(参考記事:「南仏で発見 古代ローマの沈没船」)http://natgeo.nikkeibp.co.jp/atcl/news/15/112500336/



\title{\bf Announcement 213: An interpretation of the identity $ 0.999999...... =1$
}
\author{{\it Institute of Reproducing Kernels}\\

\date{}
\maketitle
{\bf Abstract: } In this announcement, we shall give a very simple interpretation for the identity: $ 0.999999......=1$.
\bigskip
\section{ Introduction}
On January 8, 2008, Yuusuke Maede, 8 years old boy, asked the question, at Gunma University, that (Announcement 9(2007/9/1): Education for genius boys and girls):
What does it mean by the identity:
$$
0.999999......=1?
$$
at the same time, he said: I am most interesting in the structure of large prime numbers. Then, a teacher answered for the question by the popular reason based on the convergence of the series: $0.9, 0.99, 0.999,... $. Its answer seems to be not suitable for the 8 years old boy with his parents (not mathematicians). Our answer seems to have a general interest, and after then, such our answer has not been heard from many mathematicians, indeed.
This is why writting this announcement.
\medskip
\bigskip
\section{An interpretation}
\medskip
In order to see the essence, we shall consider the simplist case:
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + ... = 1.
\end{equation}
Imagine a tape of one meter length, we will give its half tape: that is,
\begin{equation}
\frac{1}{2}.
\end{equation}
Next, we will give its (the rest's half) half tape; that is, $\frac{1}{2}\cdot \frac{1}{2} = \frac{1}{2^2}$, then you have, altogether
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} .
\end{equation}
Next, we will give the last one's half (the rest's half); that is, $\frac{1}{2}\cdot \frac{1}{2} \cdot \frac{1}{2}= \frac{1}{2^3}$,
then, you have, altogether
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3}.
\end{equation}
By this procedure, you will be able to obtain the small tapes endressly. Imagine all the sum as in the left hand side of (2.1). However, we will see that this sum is just the division of the one meter tape. Therefore, we will be able to confim the identity (2.1), clearly.
The question proposed by Y. Maede is just the small change the ratio $\frac{1}{2}$ by $\frac{9}{10}$.
\bigskip
\section{ Conclusion}
Y. Maede asked the true sense of the limit in the series:
$$
0.999999.....
$$
that is, this series is approaching to 1; however, is it equal or not ? The above interpretation means that the infinite series equals to one and it is just the infinite division of one. By this inverse approarch, the question will make clear.
\medskip
\bigskip
\section{Remarks}
Y. Maede stated a conjecture that for any prime number $p$ $( p \geqq 7)$, for $1$ of $ - 1$
\begin{equation}
11111111111
\end{equation}
may be divided by $p$ (2011.2.6.12:00 at University of Aveiro, by skype)
\medskip
(No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf).
\medskip
This conjecture was proved by Professors L. Castro and Y. Sawano,
independently. Y. Maede gave later an interesting interpretation for his conjecture.
\medskip
(2015.2.26)
\end{document}


\title{\bf Announcement 214: Surprising mathematical feelings of a 7 years old girl
}
\author{{\it Institute of Reproducing Kernels}\\

\maketitle
{\bf Abstract: } In this announcement, we shall give the two surprising mathematical feelings of 7 years old girl Eko Michiwaki who stated the division by 3 of any angle and the division by zero $100/0=0$ as clear and trivial ones. As well-known, these famous problems are historical, and her results will be quite original.
\bigskip
\section{ Introduction}
We had met, 7 years old girl, Eko Michiwaki on November 23, 2014 at Tokyo Institute of Technology and August 23, 2014 at Kusatu Seminor House, with our colleagues. She, surprisingly enough, stated there repeatedly the division by 3 of any angle and the division by zero $100/0=0$ as clear and trivial ones. As well-known, these famous problems are historical and her results will be quite original.
\section{The division of any angle by 3}
\medskip
Eko Michiwaki said:
divide a given angle with 4 equal angles; this is simly done. Next, we divide one divided angle
with 4 equal angles similarly and the three angles add to other 3 angles. By continuing this procedure, we will be able to obtain the division by 3 of any angle. Her idea may be stated mathematically as follows:
$$
\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + ... ...= \frac{1}{3}.
$$
However, her idea seems to be more clear than the above mathematical formula. For this sentence, see \cite{ann3} for the sense of the limit.
\bigskip
\section{The division by zero $100/0=0$}
\medskip
As we stated in \cite{ann1}, she stated that division by zero $100/0=0$ is clear and trivial for our recent results \cite{cs,kmsy,s,ttk}. The basic important viewpoint is that division and product are different concepts and the division by zero $100/0=0$ is clear and trivial from the own sense of the division, independently of product \cite{ann1}. From the viewpoint, our colleagues stated as follows:
\medskip
On July 11, 2014, Seiichi Koshiba and Masami Yamane said at
Gunma University:
The idea for the division of Hiroshi Michiwaki and Eko Michiwaki (6 years
old daughter) is that division and product are different concepts and they
were calculated independently for long old years, by repeated addition and
subtraction, respectively. Mathematicians made the serious mistake for very
long years that the division by zero is impossible by considering that division
is the inverse operation of product. The division by zero was, however, clear
and trivial, as z/0=0, from the own nature of division.
\medskip
On February 21, 2015, Seiichi Koshiba and Masami Yamane visited our Institute and we confirmed this meaning of these sentences and the basic idea on the division by zero.
\medskip
(2015.2.27)
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances inLinear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95.http://www.scirp.org/journal/ALAMT/
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics (in press).
\bibitem{ann1}
Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.
\bibitem{ann2}
Announcement 185: The importance of the division by zero $z/0=0$, Institute of Reproducing Kernels, 2014.11.28.
\bibitem{ann3}
Announcement 213: An interpretation of the identity $ 0.999999...... =1$, Institute of Reproducing Kernels, 2015.2.26.
\end{thebibliography}
\end{document}

\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 246: An interpretation of the division by zero $1/0=0$ by the gradients of lines }
\author{{\it Institute of Reproducing Kernels}\\
\date{September 17, 2015}
\maketitle
Consider the lines $y = ax$ with gradients $a$ through the origin $ 0$. Consider the two limits that $a \quad (>0)$ tends to $ + \infty$ and $a \quad (<0)$ tends to $- \infty$, respectively. As their limits, we see that the limiting lines are $y$ — axis. Note that the gradient of the $y$ axis is zero, not infinity.
This example shows the graph of the function $y = f(x) = 1/x$ at $x = 0$ as $f(0) =0$, that was introduced by the division by zero $1/0=0$ mathematically (\cite{s,kmsy,ttk,ann}.
\footnotesize
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields, Tokyo Journal of Mathematics (in press).
\bibitem{ann}
Announcement 185: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.
\end{thebibliography}
\end{document}

\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}

\numberwithin{equation}{section}

\begin{document}
\title{\bf Announcement 247: The gradient of y-axis is zero and $\tan (\pi/2) =0$ by the division by zero $1/0=0$}

\author{{\it Institute of Reproducing Kernels}\\


\date{September 22, 2015}

\maketitle
In Announcement 246, we stated:

\medskip
Consider the lines $y = ax$ with gradients $a$ through the origin $ 0$. Consider the two limits that $a \quad (>0)$ tends to $ + \infty$ and $a \quad (<0)$ tends to $- \infty$, respectively. As their limits, we see that the limiting lines are $y$ — axis. Note that the gradient of the $y$ axis is zero, not infinity.
This example shows as in the graph of the function $y = f(x) = 1/x$ at $x = 0$ as $f(0) =0$, that was introduced by the division by zero $1/0=0$ mathematically (\cite{s,kmsy,ttk,ann}).
\medskip

For this announcement, Professor H. Begehr kindly referred to the gradient of the $y$ axis in the above: If the gradient of the imaginary axis is $0$ this would mean $\tan (\pi/2)=0$,
right? Of course this would be a consequence of $1/0=0$!
\medskip

We had sent the e-mail, soon as follows:
\medskip

For the gradient of $y$ axis, we can define it as zero, very naturally and in the intuitive sense; of course, we can give its definition precisely.
However, as you stated, we can derive it formally by the division by zero $1/0=0$; this deduction will be very interested in itself, because, the formal result $1/0=0$ is coincident with the natural sense.
\medskip

The gradients of y axis and x axis are both zero.
\medskip

Surprisingly enough, this would mean $\tan (\pi/2)=0$,
right?
THIS IS RIGHT for our sense; we gave the definition of the values for analytic functions at an isolated singular point:

\medskip
{\bf Theorem :} {\it Any analytic function takes a definite value at an isolated singular point }{\bf with a natural meaning.} The definite value is given by the first coefficient of the regular part in the Laurent expansion around the isolated singular point (\cite{ann}).
\medskip

As the fundamental results, we would like to state that

\medskip
{\huge \bf I) The gradient of the y axis is zero,}
\medskip

and
\medskip

{\huge \bf II) $\tan \frac{\pi}{2} = 0,$}
\medskip

in the sense of the division by zero in our sense.
\medskip

Note that the function $y = \tan x$ is similar with the function $y = 1/x$ around $x = \frac{\pi}{2}
$ and $ x = 0$, respectively.

\footnotesize
\bibliographystyle{plain}
\begin{thebibliography}{10}

\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95. http://www.scirp.org/journal/ALAMT/

\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.

\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operators on the real and complex fields, Tokyo Journal of Mathematics (in press).

\bibitem{ann}
Announcement 185: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.

\end{thebibliography}

\end{document}








AD

0 件のコメント:

コメントを投稿