クーロンの法則
曖昧さ回避 この項目では、ヘンリー・キャヴェンディッシュとシャルル・ド・クーロンが発見した、荷電粒子間に働く力を記述する電磁気学の法則について説明しています。シャルル・ド・クーロンによる、摩擦力に関する法則については「摩擦力」をご覧ください。
電磁気学
VFPt Solenoid correct2.svg
電気 · 磁性
[表示]静電気学
[表示]静磁気学
[表示]電気力学
[表示]電気回路
[表示]共変定式
[表示]科学者
表・話・編・歴
クーロンの法則(クーロンのほうそく、英語: Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。
ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。
また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。
目次 [非表示]
1 概要
2 電荷に関するクーロンの法則
3 磁荷に関するクーロンの法則
4 クーロン定数
5 脚注
概要[編集]
クーロンの法則は1785年から89年にかけて発見されたが、それまでの電磁気学(確立していないがそれに関する研究)は、かなり曖昧で定性的なものであった。 電磁気学は、1600年にギルバートはコハクが摩擦でものを引きつける現象から、物質を電気性物質、非電気性物質として区別したことに始まり、1640年にはゲーリケによって放電が確認された。
18世紀に入った1729年にグレイが金属が電気的性質を伝えることを発見し、その作用を起こす存在を電気と名付けた。彼はギルバートの電気性物質の区別を、電気を導く物質として導体、電気を伝えない物質を不導体と分類した。1733年、デュ・フェが摩擦によって生じる電気には二つの性質があり、同種間では反発し、異種間では引き合うこと、そして異種の電気を有する物質どうしを接触させると中和して電気的作用を示さなくなることを発見した。1746年にはライデン瓶が発明され、電気を蓄える技術を手に入れた。1750年には検電器が発明され、これらからフランクリンが電気にプラスとマイナスの区別をつけることでデュ・フェの現象を説明した。
フランクリンの手紙に示唆されて、プリーストリーは1766年に中空の金属容器を帯電させ、内部の空気中に電気力が働かないことを示し、重力との類推から電気力が距離の2乗に反比例すると予想した[1][2]。1769年にジョン・ロビソン(John Robison)は実験により同種電荷の斥力は距離の2.06乗に反比例し、異種電荷の引力は距離の2以下の累乗に反比例することを見いだした。しかしこの結果は1803年まで公表されなかった[3]。1773年にイギリスのキャヴェンディッシュは同心にした2個の金属球の外球を帯電させ、その二つを帯電させたときに内球に電気が移らないことから逆二乗の法則を導き出した。これはまさにクーロンの法則であり、クーロンよりも早く、しかも高い精度で求めていた。しかし、彼は研究資料を机にしまい込んで発表しなかったためにおよそ100年の間公表されなかった。
1785年にクーロンはねじり天秤を用いて、荷電粒子間にはたらく力が電荷量の二乗に比例し、距離の二乗に反比例するという法則、すなわち以下でしめされるクーロンの法則を導きだした。
F=k\frac{q_1q_2}{r^{2}}
ここで q_1, q_2 は荷電粒子の電荷量。r は粒子間の距離。k は比例定数。
F は q_1\cdot q_2>0 ならば斥力を表し、q_1\cdot q_2<0 ならば引力を表す。 これは実験から見出したもので距離の指数 2 は有効数字をもち、指数の実験値 2+\delta は現在もより精密な実験により更新されている。 キャヴェンディッシュによる実験では |δ|=1/50 であり、マクスウェルの実験では |δ|=1/21600 、現在の値では|δ|<2×10-9 であることが確かめられている。このため実用的には通常距離の二乗としている。 この実験の成果からこの法則をクーロンの法則と呼ぶ。また式中の定数 k をクーロン定数といい、この式で表される力 F をクーロン力(静電力、静電気力、静電引力)という。
クーロンの実験の後にも、電気力と距離の関係を求めようとして行われた実験は少なくないが、それらは必ずしも逆2乗則を支持するものではなかった[3]。クーロンのねじり天秤は非常に敏感な装置であり、現代に行われた再現実験[4]でも誤差が大きく、距離の冪数が1~3乗程度になるという結論しか得られていない。クーロンの論文のデータの誤差は3、4%程度で、おそらく多くの測定の中から最も信頼できると思われるデータだけを報告したものと推察される[3]。再現実験を行ったヘーリングは、「おそらくクーロンは理論的考察から逆2乗則を信じるようになり、それを実証しようとして実験したのであって、実験から逆2乗則を発見したのではなかろう」と結論している[3]。ただしこの時代には最小二乗法などの誤差論が存在しなかったことにも留意する必要がある。
キャベンディッシュの研究資料は1870年に設立されたキャヴェンディッシュ研究所の初代所長マクスウェルによって公表された。マクスウェルはキャヴェンディッシュの方法を改良して追試をおこない、非常に高い精度でクーロンの法則を確かめている。
電荷に関するクーロンの法則[編集]
二つの電荷を帯びた粒子(荷電粒子)間に働く力の大きさは、二つの粒子の電荷(\ q_1と\ q_2)の積に比例し、粒子間の距離r の二乗に反比例する。同符号の電荷のあいだには斥力、異なる符号の電荷のあいだには引力が働く。 この力のことをクーロン力(またはクーロン相互作用)と呼ぶ。
F=k\frac{q_1q_2}{r^2}
ただしF を力の大きさ、q を電荷の大きさ、r を2物体間の距離とする。k は比例定数である。
q1 = 1C, q2 = 1C (単位C: クーロン、1C=1A·s) として粒子間距離 r を 1m に設定し、力を測定すると比例定数が求められる。これによると k = 8.9876×109 N·m2·A-2·s-2 である。
ここで k=\frac{1}{4\pi \varepsilon_0} とおくと、 F = \frac{1}{4 \pi \varepsilon_0}\frac{q_1 q_2}{r^2} と表せる。
国際単位系(SI)で記述すると比例定数kには真空の誘電率 ε0 (= 8.854×10-12 A2·s2·N-1·m-2)があらわれる。
方向まで考慮すると、
\boldsymbol{\mathit{F}}=\frac{q_1q_2}{4 \pi \varepsilon_0}\frac{1}{r^2}\boldsymbol{\mathit{\hat{r}}}
\qquad :\boldsymbol{\mathit{\hat{r}}}=\frac{\boldsymbol{\mathit{r}}}{|\boldsymbol{\mathit{r}}|}=
\frac{\boldsymbol{\mathit{r}}}{r}
クーロン力は以下のようなクーロンポテンシャルから導くことができる。
V_1(\boldsymbol{\mathit{\hat{r}}}_1)=
\frac{q_1\cdot{}q_2}{r}\boldsymbol{\mathit{\hat{r}}}=
V_2(\boldsymbol{\mathit{\hat{r}}}_2)
クーロン力は位置のみに依存する保存力であることがわかる。
磁荷に関するクーロンの法則[編集]
また、磁荷を帯びた粒子間に働く力に関しても距離の逆二乗の関係があり、発見者(同上)の名にちなんでこれもクーロンの法則という。 ただし、磁荷は電荷のように分割はできず(どんなに細かくしても必ずN極とS極が対になる)、現実には存在しない。ここでは仮想的な概念として磁荷を取り扱う。
F を力の大きさ、m を磁荷、k'を比例定数、\ \mu_0は真空の透磁率とすると
F = k' \frac{m_1 m_2}{r^2}=\frac{m_1 m_2}{4 \pi \mu_0}\frac{1}{r^2}
書き換えると、
\boldsymbol{\mathit{F}}=m_1\boldsymbol{\mathit{H}}
ただし、この定義はEHとなるため、磁荷の単位はWb(ウェーバ)となり\boldsymbol{\mathit{H}}の単位はA/m。\boldsymbol{\mathit{B}}で別表記すると
\boldsymbol{\mathit{B}}=\mu_0\boldsymbol{\mathit{H}}
と言う対応から、
\boldsymbol{\mathit{F}}=\frac{m_1}{\mu_0}\boldsymbol{\mathit{B}}
となる。また次のようにも考えられる
m_1\boldsymbol{\mathit{H}}=
m_1\frac{m_2}{4\pi\mu_0}\frac{1}{r^2}\boldsymbol{\mathit{\hat{r}}}=
\frac{m_1}{\mu_0}\boldsymbol{\mathit{B}}
ゆえに、
\boldsymbol{\mathit{B}}=\frac{m_2}{4\pi}\frac{1}{r^2}\boldsymbol{\mathit{\hat{r}}}
となる。
クーロン定数[編集]
クーロン定数
記号 \frac{1}{4\pi\varepsilon_0}
値 8.9876×109 [N·m2·A-2·s-2]
テンプレートを表示
クーロン定数はよく自然単位系に用いられる。
脚注[編集]
https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%BC%E3%83%AD%E3%83%B3%E3%81%AE%E6%B3%95%E5%89%87
再生核研究所声明296(2016.05.06) ゼロ除算の混乱
ゼロ除算の研究を進めているが、誠に奇妙な状況と言える。簡潔に焦点を述べておきたい。
ゼロ除算はゼロで割ることを考えることであるが、物理学的にはアリストテレス、ニュートン、アンシュタインの相当に深刻な問題として、問題にされてきた。他方、数学界では628年にインドで四則演算の算術の法則の確立、記録とともに永年問題とされてきたが、オイラー、アーベル、リーマン達による、不可能であるという考えと、極限値で考えて無限遠点とする定説が永く定着してきている。
ところが数学界の定説には満足せず、今尚熱い話題、問題として、議論されている。理由は、ゼロで割れないという例外がどうして存在するのかという、素朴な疑問とともに、積極的に、計算機がゼロ除算に出会うと混乱を起こす具体的な懸案問題を解消したいという明確な動機があること、他の動機としてはアインシュタインの相対性理論の上手い解釈を求めることである。これにはアインシュタインが直接言及しているように、ゼロ除算はブラックホールに関係していて、ブラックホールの解明を意図している面もある。偶然、アインシュタイン以後100年 実に面白い事件が起きていると言える。偶然、20年以上も考えて解明できたとの著書さえ出版された。― これは、初めから、間違いであると理由を付けて質問を送っているが、納得させる回答が無い。実名を上げず、具体的に 状況を客観的に述べたい。尚、ゼロ除算はリーマン仮説に密接に関係があるとの情報があるが 詳しいことは分からない。
1: ゼロ除算回避を目指して、新しい代数的な構造を研究しているグループ、相当な積み重ねのある理論を、体や環の構造で研究している。例えて言うと、ゼロ除算は沢山存在するという、考え方と言える。― そのような抽象的な理論は不要であると主張している。
2:同じくゼロ除算回避を志向して 何と0/0 を想像上の数として導入し、正、負無限大とともに数として導入して、新しい数の体系と演算の法則を考え、展開している。相当なグループを作っているという。BBCでも報じられたが、数学界の評判は良くないようである。― そのような抽象的な理論は不要であると主張している。
3:最近、アインシュタインの理論の専門家達が アインシュタインの理論から、0/0=1, 1/0=無限 が出て、ゼロ除算は解決したと報告している。― しかし、これについては、論理的な間違いがあると具体的に指摘している。結果も我々の結果と違っている。
4:数学界の永い定説では、1/0 は不可能もしくは、極限の考え方で、無限遠点を対応させる. 0/0 は不定、解は何でも良いとなっている。― 数学に基本的な欠落があって、ゼロ除算を導入しなければ数学は不完全であると主張し、新しい世界観を提起している。
ここ2年間の研究で、ゼロ除算は 何時でもゼロz/0=0であるとして、 上記の全ての立場を否定して、新しい理論の建設を進めている。z/0 は 普通の分数ではなく、拡張された意味でと初期から説明しているが、今でも誤解していて、混乱している人は多い、これは真面目に論文を読まず、初めから、問題にしていない証拠であると言える。
上記、関係者たちと交流、討論しているが、中々理解されず、自分たちの建設している理論に固執しているさまがよく現れていて、数学なのに、心情の問題のように感じられる微妙で、奇妙な状況である。
我々のゼロ除算の理論的な簡潔な説明、それを裏付ける具体的な証拠に当たる結果を沢山提示しているが、中々理解されない状況である。
数学界でも永い間の定説で、初めから、問題にしない人は多い状況である。ゼロ除算は算数、ユークリッド幾何学、解析幾何学など、数学の基本に関わることなので、この問題を究明、明確にして頂きたいと要請している:
再生核研究所声明 277(2016.01.26):アインシュタインの数学不信 ― 数学の欠陥
再生核研究所声明 278(2016.01.27): 面白いゼロ除算の混乱と話題
再生核研究所声明279(2016.01.28) : ゼロ除算の意義
再生核研究所声明280(2016.01.29) : ゼロ除算の公認、認知を求める
我々のゼロ除算について8歳の少女が3週間くらいで、当たり前であると理解し、高校の先生たちも、簡単に理解されている数学、それを数学の専門家や、ゼロ除算の専門家が2年を超えても、誤解したり、受け入れられない状況は誠に奇妙で、アリストテレスの2000年を超える世の連続性についての固定した世界観や、上記天才数学者たちの足跡、数学界の定説に まるで全く嵌っている状況に感じられる。
以 上
2016.5.6.16:32
2016.5.6.19:05
2016.5.6.20:20
2016.5.7.05:45
2016.5.7.19:00
2016.5.8.05:25
2016.5.8.15:00 出かけている最中、 最後の文が思い付く。
2016.5.8.20:35
2016.5.9.05:40
ゼロ除算で初めて国際会議の招待を受けた:
Thank you very much to this papers. This is something new for me and I wish to know much more about it. I will read the papers very carefully.
Mean time I wish to invite you to Plenary Speaker in the third edition ・・・
The organization can pay you:
• the accommodation during the conference,
• lunches during the conference,
• the social events (excluding the excursion).
2016.5.9.06:40 完成、公表









曖昧さ回避 この項目では、ヘンリー・キャヴェンディッシュとシャルル・ド・クーロンが発見した、荷電粒子間に働く力を記述する電磁気学の法則について説明しています。シャルル・ド・クーロンによる、摩擦力に関する法則については「摩擦力」をご覧ください。
電磁気学
VFPt Solenoid correct2.svg
電気 · 磁性
[表示]静電気学
[表示]静磁気学
[表示]電気力学
[表示]電気回路
[表示]共変定式
[表示]科学者
表・話・編・歴
クーロンの法則(クーロンのほうそく、英語: Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。
ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。
また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。
目次 [非表示]
1 概要
2 電荷に関するクーロンの法則
3 磁荷に関するクーロンの法則
4 クーロン定数
5 脚注
概要[編集]
クーロンの法則は1785年から89年にかけて発見されたが、それまでの電磁気学(確立していないがそれに関する研究)は、かなり曖昧で定性的なものであった。 電磁気学は、1600年にギルバートはコハクが摩擦でものを引きつける現象から、物質を電気性物質、非電気性物質として区別したことに始まり、1640年にはゲーリケによって放電が確認された。
18世紀に入った1729年にグレイが金属が電気的性質を伝えることを発見し、その作用を起こす存在を電気と名付けた。彼はギルバートの電気性物質の区別を、電気を導く物質として導体、電気を伝えない物質を不導体と分類した。1733年、デュ・フェが摩擦によって生じる電気には二つの性質があり、同種間では反発し、異種間では引き合うこと、そして異種の電気を有する物質どうしを接触させると中和して電気的作用を示さなくなることを発見した。1746年にはライデン瓶が発明され、電気を蓄える技術を手に入れた。1750年には検電器が発明され、これらからフランクリンが電気にプラスとマイナスの区別をつけることでデュ・フェの現象を説明した。
フランクリンの手紙に示唆されて、プリーストリーは1766年に中空の金属容器を帯電させ、内部の空気中に電気力が働かないことを示し、重力との類推から電気力が距離の2乗に反比例すると予想した[1][2]。1769年にジョン・ロビソン(John Robison)は実験により同種電荷の斥力は距離の2.06乗に反比例し、異種電荷の引力は距離の2以下の累乗に反比例することを見いだした。しかしこの結果は1803年まで公表されなかった[3]。1773年にイギリスのキャヴェンディッシュは同心にした2個の金属球の外球を帯電させ、その二つを帯電させたときに内球に電気が移らないことから逆二乗の法則を導き出した。これはまさにクーロンの法則であり、クーロンよりも早く、しかも高い精度で求めていた。しかし、彼は研究資料を机にしまい込んで発表しなかったためにおよそ100年の間公表されなかった。
1785年にクーロンはねじり天秤を用いて、荷電粒子間にはたらく力が電荷量の二乗に比例し、距離の二乗に反比例するという法則、すなわち以下でしめされるクーロンの法則を導きだした。
F=k\frac{q_1q_2}{r^{2}}
ここで q_1, q_2 は荷電粒子の電荷量。r は粒子間の距離。k は比例定数。
F は q_1\cdot q_2>0 ならば斥力を表し、q_1\cdot q_2<0 ならば引力を表す。 これは実験から見出したもので距離の指数 2 は有効数字をもち、指数の実験値 2+\delta は現在もより精密な実験により更新されている。 キャヴェンディッシュによる実験では |δ|=1/50 であり、マクスウェルの実験では |δ|=1/21600 、現在の値では|δ|<2×10-9 であることが確かめられている。このため実用的には通常距離の二乗としている。 この実験の成果からこの法則をクーロンの法則と呼ぶ。また式中の定数 k をクーロン定数といい、この式で表される力 F をクーロン力(静電力、静電気力、静電引力)という。
クーロンの実験の後にも、電気力と距離の関係を求めようとして行われた実験は少なくないが、それらは必ずしも逆2乗則を支持するものではなかった[3]。クーロンのねじり天秤は非常に敏感な装置であり、現代に行われた再現実験[4]でも誤差が大きく、距離の冪数が1~3乗程度になるという結論しか得られていない。クーロンの論文のデータの誤差は3、4%程度で、おそらく多くの測定の中から最も信頼できると思われるデータだけを報告したものと推察される[3]。再現実験を行ったヘーリングは、「おそらくクーロンは理論的考察から逆2乗則を信じるようになり、それを実証しようとして実験したのであって、実験から逆2乗則を発見したのではなかろう」と結論している[3]。ただしこの時代には最小二乗法などの誤差論が存在しなかったことにも留意する必要がある。
キャベンディッシュの研究資料は1870年に設立されたキャヴェンディッシュ研究所の初代所長マクスウェルによって公表された。マクスウェルはキャヴェンディッシュの方法を改良して追試をおこない、非常に高い精度でクーロンの法則を確かめている。
電荷に関するクーロンの法則[編集]
二つの電荷を帯びた粒子(荷電粒子)間に働く力の大きさは、二つの粒子の電荷(\ q_1と\ q_2)の積に比例し、粒子間の距離r の二乗に反比例する。同符号の電荷のあいだには斥力、異なる符号の電荷のあいだには引力が働く。 この力のことをクーロン力(またはクーロン相互作用)と呼ぶ。
F=k\frac{q_1q_2}{r^2}
ただしF を力の大きさ、q を電荷の大きさ、r を2物体間の距離とする。k は比例定数である。
q1 = 1C, q2 = 1C (単位C: クーロン、1C=1A·s) として粒子間距離 r を 1m に設定し、力を測定すると比例定数が求められる。これによると k = 8.9876×109 N·m2·A-2·s-2 である。
ここで k=\frac{1}{4\pi \varepsilon_0} とおくと、 F = \frac{1}{4 \pi \varepsilon_0}\frac{q_1 q_2}{r^2} と表せる。
国際単位系(SI)で記述すると比例定数kには真空の誘電率 ε0 (= 8.854×10-12 A2·s2·N-1·m-2)があらわれる。
方向まで考慮すると、
\boldsymbol{\mathit{F}}=\frac{q_1q_2}{4 \pi \varepsilon_0}\frac{1}{r^2}\boldsymbol{\mathit{\hat{r}}}
\qquad :\boldsymbol{\mathit{\hat{r}}}=\frac{\boldsymbol{\mathit{r}}}{|\boldsymbol{\mathit{r}}|}=
\frac{\boldsymbol{\mathit{r}}}{r}
クーロン力は以下のようなクーロンポテンシャルから導くことができる。
V_1(\boldsymbol{\mathit{\hat{r}}}_1)=
\frac{q_1\cdot{}q_2}{r}\boldsymbol{\mathit{\hat{r}}}=
V_2(\boldsymbol{\mathit{\hat{r}}}_2)
クーロン力は位置のみに依存する保存力であることがわかる。
磁荷に関するクーロンの法則[編集]
また、磁荷を帯びた粒子間に働く力に関しても距離の逆二乗の関係があり、発見者(同上)の名にちなんでこれもクーロンの法則という。 ただし、磁荷は電荷のように分割はできず(どんなに細かくしても必ずN極とS極が対になる)、現実には存在しない。ここでは仮想的な概念として磁荷を取り扱う。
F を力の大きさ、m を磁荷、k'を比例定数、\ \mu_0は真空の透磁率とすると
F = k' \frac{m_1 m_2}{r^2}=\frac{m_1 m_2}{4 \pi \mu_0}\frac{1}{r^2}
書き換えると、
\boldsymbol{\mathit{F}}=m_1\boldsymbol{\mathit{H}}
ただし、この定義はEHとなるため、磁荷の単位はWb(ウェーバ)となり\boldsymbol{\mathit{H}}の単位はA/m。\boldsymbol{\mathit{B}}で別表記すると
\boldsymbol{\mathit{B}}=\mu_0\boldsymbol{\mathit{H}}
と言う対応から、
\boldsymbol{\mathit{F}}=\frac{m_1}{\mu_0}\boldsymbol{\mathit{B}}
となる。また次のようにも考えられる
m_1\boldsymbol{\mathit{H}}=
m_1\frac{m_2}{4\pi\mu_0}\frac{1}{r^2}\boldsymbol{\mathit{\hat{r}}}=
\frac{m_1}{\mu_0}\boldsymbol{\mathit{B}}
ゆえに、
\boldsymbol{\mathit{B}}=\frac{m_2}{4\pi}\frac{1}{r^2}\boldsymbol{\mathit{\hat{r}}}
となる。
クーロン定数[編集]
クーロン定数
記号 \frac{1}{4\pi\varepsilon_0}
値 8.9876×109 [N·m2·A-2·s-2]
テンプレートを表示
クーロン定数はよく自然単位系に用いられる。
脚注[編集]
https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%BC%E3%83%AD%E3%83%B3%E3%81%AE%E6%B3%95%E5%89%87
再生核研究所声明296(2016.05.06) ゼロ除算の混乱
ゼロ除算の研究を進めているが、誠に奇妙な状況と言える。簡潔に焦点を述べておきたい。
ゼロ除算はゼロで割ることを考えることであるが、物理学的にはアリストテレス、ニュートン、アンシュタインの相当に深刻な問題として、問題にされてきた。他方、数学界では628年にインドで四則演算の算術の法則の確立、記録とともに永年問題とされてきたが、オイラー、アーベル、リーマン達による、不可能であるという考えと、極限値で考えて無限遠点とする定説が永く定着してきている。
ところが数学界の定説には満足せず、今尚熱い話題、問題として、議論されている。理由は、ゼロで割れないという例外がどうして存在するのかという、素朴な疑問とともに、積極的に、計算機がゼロ除算に出会うと混乱を起こす具体的な懸案問題を解消したいという明確な動機があること、他の動機としてはアインシュタインの相対性理論の上手い解釈を求めることである。これにはアインシュタインが直接言及しているように、ゼロ除算はブラックホールに関係していて、ブラックホールの解明を意図している面もある。偶然、アインシュタイン以後100年 実に面白い事件が起きていると言える。偶然、20年以上も考えて解明できたとの著書さえ出版された。― これは、初めから、間違いであると理由を付けて質問を送っているが、納得させる回答が無い。実名を上げず、具体的に 状況を客観的に述べたい。尚、ゼロ除算はリーマン仮説に密接に関係があるとの情報があるが 詳しいことは分からない。
1: ゼロ除算回避を目指して、新しい代数的な構造を研究しているグループ、相当な積み重ねのある理論を、体や環の構造で研究している。例えて言うと、ゼロ除算は沢山存在するという、考え方と言える。― そのような抽象的な理論は不要であると主張している。
2:同じくゼロ除算回避を志向して 何と0/0 を想像上の数として導入し、正、負無限大とともに数として導入して、新しい数の体系と演算の法則を考え、展開している。相当なグループを作っているという。BBCでも報じられたが、数学界の評判は良くないようである。― そのような抽象的な理論は不要であると主張している。
3:最近、アインシュタインの理論の専門家達が アインシュタインの理論から、0/0=1, 1/0=無限 が出て、ゼロ除算は解決したと報告している。― しかし、これについては、論理的な間違いがあると具体的に指摘している。結果も我々の結果と違っている。
4:数学界の永い定説では、1/0 は不可能もしくは、極限の考え方で、無限遠点を対応させる. 0/0 は不定、解は何でも良いとなっている。― 数学に基本的な欠落があって、ゼロ除算を導入しなければ数学は不完全であると主張し、新しい世界観を提起している。
ここ2年間の研究で、ゼロ除算は 何時でもゼロz/0=0であるとして、 上記の全ての立場を否定して、新しい理論の建設を進めている。z/0 は 普通の分数ではなく、拡張された意味でと初期から説明しているが、今でも誤解していて、混乱している人は多い、これは真面目に論文を読まず、初めから、問題にしていない証拠であると言える。
上記、関係者たちと交流、討論しているが、中々理解されず、自分たちの建設している理論に固執しているさまがよく現れていて、数学なのに、心情の問題のように感じられる微妙で、奇妙な状況である。
我々のゼロ除算の理論的な簡潔な説明、それを裏付ける具体的な証拠に当たる結果を沢山提示しているが、中々理解されない状況である。
数学界でも永い間の定説で、初めから、問題にしない人は多い状況である。ゼロ除算は算数、ユークリッド幾何学、解析幾何学など、数学の基本に関わることなので、この問題を究明、明確にして頂きたいと要請している:
再生核研究所声明 277(2016.01.26):アインシュタインの数学不信 ― 数学の欠陥
再生核研究所声明 278(2016.01.27): 面白いゼロ除算の混乱と話題
再生核研究所声明279(2016.01.28) : ゼロ除算の意義
再生核研究所声明280(2016.01.29) : ゼロ除算の公認、認知を求める
我々のゼロ除算について8歳の少女が3週間くらいで、当たり前であると理解し、高校の先生たちも、簡単に理解されている数学、それを数学の専門家や、ゼロ除算の専門家が2年を超えても、誤解したり、受け入れられない状況は誠に奇妙で、アリストテレスの2000年を超える世の連続性についての固定した世界観や、上記天才数学者たちの足跡、数学界の定説に まるで全く嵌っている状況に感じられる。
以 上
2016.5.6.16:32
2016.5.6.19:05
2016.5.6.20:20
2016.5.7.05:45
2016.5.7.19:00
2016.5.8.05:25
2016.5.8.15:00 出かけている最中、 最後の文が思い付く。
2016.5.8.20:35
2016.5.9.05:40
ゼロ除算で初めて国際会議の招待を受けた:
Thank you very much to this papers. This is something new for me and I wish to know much more about it. I will read the papers very carefully.
Mean time I wish to invite you to Plenary Speaker in the third edition ・・・
The organization can pay you:
• the accommodation during the conference,
• lunches during the conference,
• the social events (excluding the excursion).
2016.5.9.06:40 完成、公表









0 件のコメント:
コメントを投稿