奈良】正倉院「白瑠璃碗」ルーツはローマ? 天理参考館所蔵の類似の円形切子碗分析[05/25]©2ch.net
1 : 坊主 ★ 転載ダメ©2ch.net2016/05/25(水) 19:51:48.53 ID:CAP_USER
引用元:毎日新聞 2016年5月25日 地方版
http://mainichi.jp/articles/20160525/ddl/k29/040/513000c
1~4世紀の地中海域成分と一致
天理大付属天理参考館(天理市)所蔵のガラス製品「円形切子碗(きりこわん)」が、1~4世紀の帝政ローマ圏で作られた可能性があることが参考館などの科学分析で分かった。
この碗は、6世紀ごろのササン朝ペルシャ(現在のイラン付近)製とされる正倉院宝物「白瑠璃碗(はくるりのわん)」との類似性が指摘されており、参考館は「宝物のルーツがローマである可能性がある」という。同館は25日~6月6日、円形切子碗を特別展示する。
円形切子碗は高さ6・5センチ、口径9・7センチ、厚さ3・5ミリ。
表面の切り子細工は大半が円形だが、底部は方形にカットされている。
参考館と東京理科大の阿部善也講師が昨年、最新の蛍光エックス線分析でガラスの組成を調査。
鉄分が少ないなど1~4世紀の帝政ローマ圏の地中海域で使われたガラスの成分と一致した。
一方、白瑠璃碗は高さ8・5センチ、口径12センチ、厚さ5ミリ。
参考館の碗と外見は似ており、一回り大きく厚い。切り子は円形のみ施されている。
参考館によると、切り子ガラスは帝政ローマ圏で技術が発展し、3世紀に興った東方のササン朝ペルシャに伝わったと考えられている。
ローマでは丸底で上部がくびれた「円形切子括碗(かつわん)」が2世紀以降に一般化したが、ササン朝では6世紀にはくびれが消えて分厚い「正倉院タイプ」が登場。シルクロード交易の際に割れないよう厚手に作ったとの説もある。
参考館の巽善信学芸員は「参考館の碗は、ローマの括碗とササン朝の『正倉院タイプ』の間を埋める例と位置づけられる。『正倉院タイプ』はササン朝固有と考えられてきたが、ヒントとなった器がローマにあった可能性が出てきた」と指摘する。
研究成果は6月4日に奈良大(奈良市)で開かれる日本文化財科学会で報告される。
特別展示は午前9時半~午後4時半。大人400円、小中学生200円。31日休館。【矢追健介】
ローマ圏製と推測されている円形切子碗=奈良・天理大付属天理参考館提供
http://cdn.mainichi.jp/vol1/2016/05/25/20160525dd0phj000135000p/9.jpg
正倉院宝物の「白瑠璃碗」=奈良・宮内庁正倉院事務所提供
http://cdn.mainichi.jp/vol1/2016/05/25/20160525dd0phj000134000p/9.jpghttp://potato.2ch.net/test/read.cgi/femnewsplus/1464173508/-100
Announcement 213: An interpretation of the identity $ 0.999999...... =1$
カテゴリ:カテゴリ未分類
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 213: An interpretation of the identity $ 0.999999...... =1$
}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
\date{}
\maketitle
{\bf Abstract: } In this announcement, we shall give a very simple interpretation for the identity: $ 0.999999......=1$.
\bigskip
\section{ Introduction}
On January 8, 2008, Yuusuke Maede, 8 years old boy, asked the question, at Gunma University, that (Announcement 9(2007/9/1): Education for genius boys and girls):
What does it mean by the identity:
$$
0.999999......=1?
$$
at the same time, he said: I am most interesting in the structure of large prime numbers. Then, a teacher answered for the question by the popular reason based on the convergence of the series: $0.9, 0.99, 0.999,... $. Its answer seems to be not suitable for the 8 years old boy with his parents (not mathematicians). Our answer seems to have a general interest, and after then, such our answer has not been heard from many mathematicians, indeed.
This is why writting this announcement.
\medskip
\bigskip
\section{An interpretation}
\medskip
In order to see the essence, we shall consider the simplist case:
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + ... = 1.
\end{equation}
Imagine a tape of one meter length, we will give its half tape: that is,
\begin{equation}
\frac{1}{2}.
\end{equation}
Next, we will give its (the rest's half) half tape; that is, $\frac{1}{2}\cdot \frac{1}{2} = \frac{1}{2^2}$, then you have, altogether
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} .
\end{equation}
Next, we will give the last one's half (the rest's half); that is, $\frac{1}{2}\cdot \frac{1}{2} \cdot \frac{1}{2}= \frac{1}{2^3}$,
then, you have, altogether
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3}.
\end{equation}
By this procedure, you will be able to obtain the small tapes endressly. Imagine all the sum as in the left hand side of (2.1). However, we will see that this sum is just the division of the one meter tape. Therefore, we will be able to confim the identity (2.1), clearly.
The question proposed by Y. Maede is just the small change the ratio $\frac{1}{2}$ by $\frac{9}{10}$.
\bigskip
\section{ Conclusion}
Y. Maede asked the true sense of the limit in the series:
$$
0.999999.....
$$
that is, this series is approaching to 1; however, is it equal or not ? The above interpretation means that the infinite series equals to one and it is just the infinite division of one. By this inverse approarch, the question will make clear.
\medskip
\bigskip
\section{Remarks}
Y. Maede stated a conjecture that for any prime number $p$ $( p \geqq 7)$, for $1$ of $ - 1$
\begin{equation}
11111111111
\end{equation}
may be divided by $p$ (2011.2.6.12:00 at University of Aveiro, by skype)
\medskip
(No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf).
\medskip
This conjecture was proved by Professors L. Castro and Y. Sawano,
independently. Y. Maede gave later an interesting interpretation for his conjecture.
\medskip
(2015.2.26)
\end{document}
\title{\bf Announcement 214: Surprising mathematical feelings of a 7 years old girl
}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
\date{}
\maketitle
{\bf Abstract: } In this announcement, we shall give the two surprising mathematical feelings of 7 years old girl Eko Michiwaki who stated the division by 3 of any angle and the division by zero $100/0=0$ as clear and trivial ones. As well-known, these famous problems are historical, and her results will be quite original.
\bigskip
\section{ Introduction}
We had met, 7 years old girl, Eko Michiwaki on November 23, 2014 at Tokyo Institute of Technology and August 23, 2014 at Kusatu Seminor House, with our colleagues. She, surprisingly enough, stated there repeatedly the division by 3 of any angle and the division by zero $100/0=0$ as clear and trivial ones. As well-known, these famous problems are historical and her results will be quite original.
\section{The division of any angle by 3}
\medskip
Eko Michiwaki said:
divide a given angle with 4 equal angles; this is simly done. Next, we divide one divided angle
with 4 equal angles similarly and the three angles add to other 3 angles. By continuing this procedure, we will be able to obtain the division by 3 of any angle. Her idea may be stated mathematically as follows:
$$
\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + ... ...= \frac{1}{3}.
$$
However, her idea seems to be more clear than the above mathematical formula. For this sentence, see \cite{ann3} for the sense of the limit.
\bigskip
\section{The division by zero $100/0=0$}
\medskip
As we stated in \cite{ann1}, she stated that division by zero $100/0=0$ is clear and trivial for our recent results \cite{cs,kmsy,s,ttk}. The basic important viewpoint is that division and product are different concepts and the division by zero $100/0=0$ is clear and trivial from the own sense of the division, independently of product \cite{ann1}. From the viewpoint, our colleagues stated as follows:
\medskip
On July 11, 2014, Seiichi Koshiba and Masami Yamane said at
Gunma University:
The idea for the division of Hiroshi Michiwaki and Eko Michiwaki (6 years
old daughter) is that division and product are different concepts and they
were calculated independently for long old years, by repeated addition and
subtraction, respectively. Mathematicians made the serious mistake for very
long years that the division by zero is impossible by considering that division
is the inverse operation of product. The division by zero was, however, clear
and trivial, as z/0=0, from the own nature of division.
\medskip
On February 21, 2015, Seiichi Koshiba and Masami Yamane visited our Institute and we confirmed this meaning of these sentences and the basic idea on the division by zero.
\medskip
(2015.2.27)
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances inLinear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95.http://www.scirp.org/journal/ALAMT/
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics (in press).
\bibitem{ann1}
Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.
\bibitem{ann2}
Announcement 185: The importance of the division by zero $z/0=0$, Institute of Reproducing Kernels, 2014.11.28.
\bibitem{ann3}
Announcement 213: An interpretation of the identity $ 0.999999...... =1$, Institute of Reproducing Kernels, 2015.2.26.
\end{thebibliography}
\end{document}
再生核研究所声明297(2016.05.19) 豊かなゼロ、空の世界、隠れた未知の世界
ゼロ除算の研究を進めているが、微分方程式のある項を落とした場合の解と落とす前の解を結び付ける具体的な方法として、ゼロ除算の解析の具体的な応用がある事が分かった。この事実は、広く世の現象として、面白い視点に気づかせたので、普遍的な現象として、生きた形で表現したい。
ある項を落とした微分方程式とは、逆に言えば、与えられた微分方程式はさらに 複雑な微分方程式において、沢山の項を落として考えられた簡略の微分方程式であると考えられる。どのくらいの項を落としたかと考えれば、限りない項が存在して、殆どがゼロとして消された微分方程式であると見なせる。この意味で、ゼロの世界は限りなく広がっていると考えられる。
消された見えない世界は ゼロの世界、空、ある隠された世界として、無限に存在していると考えられる。たまたま、現れた項が 表現する物理現象を記述していると言える。
これは、地球に繁茂する動植物が、大海や大地から、生まれては、それらに回帰する現象と同様と言える。大量に発生した卵の極一部がそれぞれの生物に成長して、やがて元の世界に戻り、豊かな大海や大地は生命の存在の元、隠れた存在の大いなる世界であると考えられる。無数の生命の発生と回帰した世界の様は 生物、生体の様の変化は捉えられても、人間の精神活用や生命の生命活動の様の精しい様などは 殆ど何も分からない存在であると言える。我々の認知した世界と発生して来た世界と消えて行った認知できない世界である。
このような視点で、人間にとって最も大事なことは 何だろうか。それは、個々の人間も、人類も 大きな存在の中の小さな存在であることを先ず自覚して、背後に存在する大いなる基礎、環境に畏敬の念を抱き、謙虚さを保つことではないだろうか。この視点では日本古来の神道の精神こそ、宗教の原点として大事では ないだろうか。未知なる自然に対する畏敬の念である。実際、日本でも、世界各地でも人工物を建設するとき、神事を行い、神の許しを求めてきたものである。その心は大いなる存在と人間の調和を志向する意味で人間存在の原理ではないだろうか。それはそもそも 原罪の概念そのものであると言える。
しかしながら、人類が好きなように生きたいも道理であり、巨大都市を建設して、環境を汚染して生存を享受したいも道理であるから、それらの一面も否定できず、それは結局全体的な有り様の中でのバランスの問題ではないだろうか。人類の進化の面には必然的に人類絶滅の要素が内在していると考えられる:
再生核研究所声明 144(2013.12.12) 人類滅亡の概念 - 進化とは 滅亡への過程である
そこで、結局は全体的な調和、バランスの問題である:
再生核研究所声明 56: アースデイ の理念
発想における最も大事なことに触れたが、表現したかった元を回想したい。― それは存在と非存在の間の微妙な有り様と非存在の認知できない限りない世界に想いを致す心情そのものであった。無数とも言える人間の想いはどこに消えて行ったのだろうか。先も分からず、由来も分からない。世の中は雲のような存在であると言える。
以 上
1 : 坊主 ★ 転載ダメ©2ch.net2016/05/25(水) 19:51:48.53 ID:CAP_USER
引用元:毎日新聞 2016年5月25日 地方版
http://mainichi.jp/articles/20160525/ddl/k29/040/513000c
1~4世紀の地中海域成分と一致
天理大付属天理参考館(天理市)所蔵のガラス製品「円形切子碗(きりこわん)」が、1~4世紀の帝政ローマ圏で作られた可能性があることが参考館などの科学分析で分かった。
この碗は、6世紀ごろのササン朝ペルシャ(現在のイラン付近)製とされる正倉院宝物「白瑠璃碗(はくるりのわん)」との類似性が指摘されており、参考館は「宝物のルーツがローマである可能性がある」という。同館は25日~6月6日、円形切子碗を特別展示する。
円形切子碗は高さ6・5センチ、口径9・7センチ、厚さ3・5ミリ。
表面の切り子細工は大半が円形だが、底部は方形にカットされている。
参考館と東京理科大の阿部善也講師が昨年、最新の蛍光エックス線分析でガラスの組成を調査。
鉄分が少ないなど1~4世紀の帝政ローマ圏の地中海域で使われたガラスの成分と一致した。
一方、白瑠璃碗は高さ8・5センチ、口径12センチ、厚さ5ミリ。
参考館の碗と外見は似ており、一回り大きく厚い。切り子は円形のみ施されている。
参考館によると、切り子ガラスは帝政ローマ圏で技術が発展し、3世紀に興った東方のササン朝ペルシャに伝わったと考えられている。
ローマでは丸底で上部がくびれた「円形切子括碗(かつわん)」が2世紀以降に一般化したが、ササン朝では6世紀にはくびれが消えて分厚い「正倉院タイプ」が登場。シルクロード交易の際に割れないよう厚手に作ったとの説もある。
参考館の巽善信学芸員は「参考館の碗は、ローマの括碗とササン朝の『正倉院タイプ』の間を埋める例と位置づけられる。『正倉院タイプ』はササン朝固有と考えられてきたが、ヒントとなった器がローマにあった可能性が出てきた」と指摘する。
研究成果は6月4日に奈良大(奈良市)で開かれる日本文化財科学会で報告される。
特別展示は午前9時半~午後4時半。大人400円、小中学生200円。31日休館。【矢追健介】
ローマ圏製と推測されている円形切子碗=奈良・天理大付属天理参考館提供
http://cdn.mainichi.jp/vol1/2016/05/25/20160525dd0phj000135000p/9.jpg
正倉院宝物の「白瑠璃碗」=奈良・宮内庁正倉院事務所提供
http://cdn.mainichi.jp/vol1/2016/05/25/20160525dd0phj000134000p/9.jpghttp://potato.2ch.net/test/read.cgi/femnewsplus/1464173508/-100
Announcement 213: An interpretation of the identity $ 0.999999...... =1$
カテゴリ:カテゴリ未分類
\documentclass[12pt]{article}
\usepackage{latexsym,amsmath,amssymb,amsfonts,amstext,amsthm}
\numberwithin{equation}{section}
\begin{document}
\title{\bf Announcement 213: An interpretation of the identity $ 0.999999...... =1$
}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
\date{}
\maketitle
{\bf Abstract: } In this announcement, we shall give a very simple interpretation for the identity: $ 0.999999......=1$.
\bigskip
\section{ Introduction}
On January 8, 2008, Yuusuke Maede, 8 years old boy, asked the question, at Gunma University, that (Announcement 9(2007/9/1): Education for genius boys and girls):
What does it mean by the identity:
$$
0.999999......=1?
$$
at the same time, he said: I am most interesting in the structure of large prime numbers. Then, a teacher answered for the question by the popular reason based on the convergence of the series: $0.9, 0.99, 0.999,... $. Its answer seems to be not suitable for the 8 years old boy with his parents (not mathematicians). Our answer seems to have a general interest, and after then, such our answer has not been heard from many mathematicians, indeed.
This is why writting this announcement.
\medskip
\bigskip
\section{An interpretation}
\medskip
In order to see the essence, we shall consider the simplist case:
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + ... = 1.
\end{equation}
Imagine a tape of one meter length, we will give its half tape: that is,
\begin{equation}
\frac{1}{2}.
\end{equation}
Next, we will give its (the rest's half) half tape; that is, $\frac{1}{2}\cdot \frac{1}{2} = \frac{1}{2^2}$, then you have, altogether
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} .
\end{equation}
Next, we will give the last one's half (the rest's half); that is, $\frac{1}{2}\cdot \frac{1}{2} \cdot \frac{1}{2}= \frac{1}{2^3}$,
then, you have, altogether
\begin{equation}
\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3}.
\end{equation}
By this procedure, you will be able to obtain the small tapes endressly. Imagine all the sum as in the left hand side of (2.1). However, we will see that this sum is just the division of the one meter tape. Therefore, we will be able to confim the identity (2.1), clearly.
The question proposed by Y. Maede is just the small change the ratio $\frac{1}{2}$ by $\frac{9}{10}$.
\bigskip
\section{ Conclusion}
Y. Maede asked the true sense of the limit in the series:
$$
0.999999.....
$$
that is, this series is approaching to 1; however, is it equal or not ? The above interpretation means that the infinite series equals to one and it is just the infinite division of one. By this inverse approarch, the question will make clear.
\medskip
\bigskip
\section{Remarks}
Y. Maede stated a conjecture that for any prime number $p$ $( p \geqq 7)$, for $1$ of $ - 1$
\begin{equation}
11111111111
\end{equation}
may be divided by $p$ (2011.2.6.12:00 at University of Aveiro, by skype)
\medskip
(No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf).
\medskip
This conjecture was proved by Professors L. Castro and Y. Sawano,
independently. Y. Maede gave later an interesting interpretation for his conjecture.
\medskip
(2015.2.26)
\end{document}
\title{\bf Announcement 214: Surprising mathematical feelings of a 7 years old girl
}
\author{{\it Institute of Reproducing Kernels}\\
Kawauchi-cho, 5-1648-16,\\
Kiryu 376-0041, Japan\\
\date{}
\maketitle
{\bf Abstract: } In this announcement, we shall give the two surprising mathematical feelings of 7 years old girl Eko Michiwaki who stated the division by 3 of any angle and the division by zero $100/0=0$ as clear and trivial ones. As well-known, these famous problems are historical, and her results will be quite original.
\bigskip
\section{ Introduction}
We had met, 7 years old girl, Eko Michiwaki on November 23, 2014 at Tokyo Institute of Technology and August 23, 2014 at Kusatu Seminor House, with our colleagues. She, surprisingly enough, stated there repeatedly the division by 3 of any angle and the division by zero $100/0=0$ as clear and trivial ones. As well-known, these famous problems are historical and her results will be quite original.
\section{The division of any angle by 3}
\medskip
Eko Michiwaki said:
divide a given angle with 4 equal angles; this is simly done. Next, we divide one divided angle
with 4 equal angles similarly and the three angles add to other 3 angles. By continuing this procedure, we will be able to obtain the division by 3 of any angle. Her idea may be stated mathematically as follows:
$$
\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + ... ...= \frac{1}{3}.
$$
However, her idea seems to be more clear than the above mathematical formula. For this sentence, see \cite{ann3} for the sense of the limit.
\bigskip
\section{The division by zero $100/0=0$}
\medskip
As we stated in \cite{ann1}, she stated that division by zero $100/0=0$ is clear and trivial for our recent results \cite{cs,kmsy,s,ttk}. The basic important viewpoint is that division and product are different concepts and the division by zero $100/0=0$ is clear and trivial from the own sense of the division, independently of product \cite{ann1}. From the viewpoint, our colleagues stated as follows:
\medskip
On July 11, 2014, Seiichi Koshiba and Masami Yamane said at
Gunma University:
The idea for the division of Hiroshi Michiwaki and Eko Michiwaki (6 years
old daughter) is that division and product are different concepts and they
were calculated independently for long old years, by repeated addition and
subtraction, respectively. Mathematicians made the serious mistake for very
long years that the division by zero is impossible by considering that division
is the inverse operation of product. The division by zero was, however, clear
and trivial, as z/0=0, from the own nature of division.
\medskip
On February 21, 2015, Seiichi Koshiba and Masami Yamane visited our Institute and we confirmed this meaning of these sentences and the basic idea on the division by zero.
\medskip
(2015.2.27)
\bigskip
\bibliographystyle{plain}
\begin{thebibliography}{10}
\bibitem{cs}
L. P. Castro and S.Saitoh, Fractional functions and their representations, Complex Anal. Oper. Theory {\bf7} (2013), no. 4, 1049-1063.
\bibitem{kmsy}
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on $100/0=0$ and on $0/0=0$,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
\bibitem{s}
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances inLinear Algebra \& Matrix Theory. Vol.4 No.2 (2014), 87-95.http://www.scirp.org/journal/ALAMT/
\bibitem{ttk}
S.-E. Takahasi, M. Tsukada and Y. Kobayashi, Classification of continuous fractional binary operations on the real and complex fields, Tokyo Journal of Mathematics (in press).
\bibitem{ann1}
Announcement 179: Division by zero is clear as z/0=0 and it is fundamental in mathematics,
Institute of Reproducing Kernels, 2014.10.22.
\bibitem{ann2}
Announcement 185: The importance of the division by zero $z/0=0$, Institute of Reproducing Kernels, 2014.11.28.
\bibitem{ann3}
Announcement 213: An interpretation of the identity $ 0.999999...... =1$, Institute of Reproducing Kernels, 2015.2.26.
\end{thebibliography}
\end{document}
再生核研究所声明297(2016.05.19) 豊かなゼロ、空の世界、隠れた未知の世界
ゼロ除算の研究を進めているが、微分方程式のある項を落とした場合の解と落とす前の解を結び付ける具体的な方法として、ゼロ除算の解析の具体的な応用がある事が分かった。この事実は、広く世の現象として、面白い視点に気づかせたので、普遍的な現象として、生きた形で表現したい。
ある項を落とした微分方程式とは、逆に言えば、与えられた微分方程式はさらに 複雑な微分方程式において、沢山の項を落として考えられた簡略の微分方程式であると考えられる。どのくらいの項を落としたかと考えれば、限りない項が存在して、殆どがゼロとして消された微分方程式であると見なせる。この意味で、ゼロの世界は限りなく広がっていると考えられる。
消された見えない世界は ゼロの世界、空、ある隠された世界として、無限に存在していると考えられる。たまたま、現れた項が 表現する物理現象を記述していると言える。
これは、地球に繁茂する動植物が、大海や大地から、生まれては、それらに回帰する現象と同様と言える。大量に発生した卵の極一部がそれぞれの生物に成長して、やがて元の世界に戻り、豊かな大海や大地は生命の存在の元、隠れた存在の大いなる世界であると考えられる。無数の生命の発生と回帰した世界の様は 生物、生体の様の変化は捉えられても、人間の精神活用や生命の生命活動の様の精しい様などは 殆ど何も分からない存在であると言える。我々の認知した世界と発生して来た世界と消えて行った認知できない世界である。
このような視点で、人間にとって最も大事なことは 何だろうか。それは、個々の人間も、人類も 大きな存在の中の小さな存在であることを先ず自覚して、背後に存在する大いなる基礎、環境に畏敬の念を抱き、謙虚さを保つことではないだろうか。この視点では日本古来の神道の精神こそ、宗教の原点として大事では ないだろうか。未知なる自然に対する畏敬の念である。実際、日本でも、世界各地でも人工物を建設するとき、神事を行い、神の許しを求めてきたものである。その心は大いなる存在と人間の調和を志向する意味で人間存在の原理ではないだろうか。それはそもそも 原罪の概念そのものであると言える。
しかしながら、人類が好きなように生きたいも道理であり、巨大都市を建設して、環境を汚染して生存を享受したいも道理であるから、それらの一面も否定できず、それは結局全体的な有り様の中でのバランスの問題ではないだろうか。人類の進化の面には必然的に人類絶滅の要素が内在していると考えられる:
再生核研究所声明 144(2013.12.12) 人類滅亡の概念 - 進化とは 滅亡への過程である
そこで、結局は全体的な調和、バランスの問題である:
再生核研究所声明 56: アースデイ の理念
発想における最も大事なことに触れたが、表現したかった元を回想したい。― それは存在と非存在の間の微妙な有り様と非存在の認知できない限りない世界に想いを致す心情そのものであった。無数とも言える人間の想いはどこに消えて行ったのだろうか。先も分からず、由来も分からない。世の中は雲のような存在であると言える。
以 上
AD
0 件のコメント:
コメントを投稿