2016年5月2日月曜日

Aristotelian Infinites1 By John M. Cooper

Aristotelian Infinites1
By John M. Cooper
I Introduction
In this paper I examine and discuss Aristotle’s positive proposals in his account of
infinity in Physics III as to the existence and essential nature of the infiniteness of such
infinite things as he holds in fact exist: number, time and spatial magnitudes. This means
that I will focus mainly upon Physics III 6, since that is where Aristotle professedly gives
us, explains and argues for, his own positive account of infinity: in effect, I offer in the
course of the paper a virtually complete, detailed commentary on that whole chapter.2
Let me begin, however, by situating this short “treatise” on Infinity in its place
within the Physics as a whole. Aristotle introduces his study of the infinite (Physics, III 4-
8) by asking the question (Phys. III 4, 202b35-36), whether there are any infinite things
(in Greek, apeira) or not, and if there are, in what their being infinite consists, that is,
what the nature or essence is of infinite things, qua infinite.3 The Physics, or more par-

1 This paper results from my work in preparing for and participating in a reading
group workshop on Physics III 4-8 organized by Christian Wildberg that took place at the
Benaki Museum’s principal site in Athens, for Princeton classical philosophy graduate
students and faculty together with corresponding students and faculty in Greece, July 8-
12, 2013. I thank Wildberg and all the other participants for a very stimulating and educational
week of discussion, from which I profited greatly, as I am sure we all did. I have
written this paper out of dissatisfaction with many of what seemed at the time generally
accepted results of our common work, and especially with my own contributions to the
discussion. In preparing this final version I benefited from written comments on an earlier
version by three fellow-participants, Wildberg, Panos Dimas, and Pavlos Kalligas, as
well as both written comments by and extensive discussions with Benjamin Morison, for
all of which I am very grateful.
2 The only exception is lines 206b27-33, where Aristotle uses his explanation in III 6
of the two ways of being infinite that he recognizes, so as to criticize Plato’s postulation
of the Great and the Small as two different infinites.
3 The Greek reads: … περὶ τοῦ ἀπείρου, εἰ ἔστιν ἢ µή, καὶ εἰ ἔστιν, τί ἐστιν. I shift in
my paraphrase from Aristotle’s singular (‘the infinite’) to the plural (‘infinites’) because,
as we will see, Aristotle not only thinks that there are in fact several different kinds of
2
ticularly its first four books, is intended to explain and establish on secure and correct
foundations the “science” (epistêmê), or “philosophy” (philosophia; see 203a2) of the
whole realm of physical, that is, natural, entities (in Greek, physika): natural objects (as
opposed to artifacts as well as to any purely metaphysical or mathematical entities there
may be) and their natural properties. He has explained in II 1 (192b13-15) that things
constituted by nature differ from all other things in that each of them has within it, just
insofar as it is the specific natural thing that it is, a “principle” (archê), or causal origin,
both of its changing (in size or quality or place) in certain ways specific to the particular
kind of thing it is, and of staying the same (in some other such respects). Immediately
before that (192b9-11), he has specified natural things as bodies (animals and plants,
and their constituent physical parts—both organs and homoeomerous parts such as
flesh, blood, and bone—as well as the “simple bodies” (pure earth, pure air, pure fire
and pure water which on Aristotelian theory are, in a way, theoretical entities: they really
exist in the world but they exercise their influence only by their presence in mixtures
constituted in various proportions out of all four of them with one another: phenomenal
fire, earth, air and water) and in the other stuffs found in nature (such as bronze, or
clay, or iron, or granite, or smoke) ultimately compounded out of them. Hence in announcing
his study of infinite things (at III 4, 202b30-31) he can begin by telling us that
the “science” of nature concerns magnitudes (megethê), change (in Greek, kinêsis) and
time (chronos): this is because all natural things, being bodies (as he has already said in II
1), are spatially extended magnitudes (i.e., continuous quantities, as opposed to discrete
ones such as numbers) and because, since every natural thing’s nature (as we have

infinite things (spatial magnitudes, numbers, and time) but that, as we see from his discussion
of these cases, there are two different ways that an infinite thing can be infinite
(viz., as he puts it, “by division” or “by addition”), although there is according to him a
single nature to the infinity that they share in these different ways.
3
seen) is defined in terms of changing (in some respects) and staying the same (in other
respects), they necessarily exist in and over time, since all changes take place over time.
He then goes on to say that since all three of these things—magnitudes, change and
time—are essentially such as to be either infinite (that is, unlimited: apeiron, i.e. without
a peras) or finite, i.e., limited (peperasmenon) (or, one could add, perhaps, in different
ways, both), not only does it belong to the science of nature to study and understand
what magnitudes and change and time are;
4 it also belongs to that science to study
whether any magnitudes, changes or times, or anything else in the physical world, is infinite
and, if so, to understand what it is for any such infinite thing to be infinite. Thus,
for Aristotle, knowing about the nature of infinity is a basic topic for natural science because
it is a feature of the quantities that are basic to the natural world: spatial magnitudes,
change and time.

4 He has already argued (III 1, 200b13-14) that the science of nature studies and
understands what change is, and accordingly he has already in III 1-3 (200b25-202b29)
proposed and argued for an account of the nature or essence of change. He has also
explained in III 1, on different grounds than the ones offered in III 4, that this science also
studies and understands what the infinite is, as well as what time, void and place (these
three things being presupposed, in one way or another, by change) are (see 200b15-
25). Thus in III 1, Aristotle has prepared the way for the whole series of topics that he
takes up in Physics III and IV, in the order: change, infinite, place, void, and time. He also,
as I have noted, speaks in III 4, though not in III 1 of magnitudes in general too
(megethê) as among the things the science of nature studies and understands, though
that is not among the topics taken up in books III and IV. However, in the first three
chapters of book VI, he develops and argues for an account of spatial magnitudes, as
well as of changes (including movements from place to place) and periods of time as divisible
always into further, shorter ones and never into anything indivisible, no matter
how small a magnitude or movement or period of time you might consider. So that topic
too is one of the ones to which he devotes specific attention within the Physics as a
whole, even if not in III-IV. In fact, at 207b25-27 in III 7 Aristotle promises to explain
“later” why every magnitude is divisible into magnitudes, and he is referring there to the
book VI discussion (I thank Panos Dimas for clarifying this reference). Contrast this passage
with chapter 6, 206a15-16, where if the mention of the ease of refuting the hypothesis
of “indivisible lines” is an implied reference at all, it appears to be to the little
treatise with the title “On Indivisible Lines” preserved in the Corpus Aristotelicum,
though there is a scholarly consensus that that is by a post-Aristotelian Peripatetic author.
4
Though, as I have said, my main focus in what follows will be on Physics III 6 I will
frequently refer to and discuss some passages in the preparatory chapters, III 4 and 5,
where among other things Aristotle expounds the views and criticizes the errors of earlier
philosophers—pre-Socratics and Plato—on infinity, as well as some passages in the
amplificatory discussions in III 7 and 8 of his III 6 theory. My overall aim is to understand
and appreciate better than existing accounts in the secondary literature seem to me to
do, certain essential points, as well as the intellectual merits, of Aristotle’s extremely
subtle positive proposals about the nature of infinity as, according to him, it is actually
found in the natural world.
II Physics III 6: Overview
Aristotle begins his
https://www.princeton.edu/~johncoop/Papers/Aristotelian_Infinites_10-14.pdf

再生核研究所声明295(2016.04.07) 無限の先にあるもの、永遠の先にあるもの ―盲点
セロ除算は新しい空間像をもたらしたので、いろいろな面から論じ、例えば、再生核研究所声明 271(2016.01.04): 永遠は、無限は確かに見えるが、不思議な現象 の中で、次のように述べた。

直線を どこまでも どこまでも行ったら、どうなるだろうか。立体射影の考えで、全直線は 球面上 北極、無限遠点を通る無限遠点を除く円にちょうど写るから、我々は、無限も、永遠も明確に見える、捉えることができると言える。 数学的な解説などは下記を参照:

再生核研究所声明264 (2015.12.23):永遠とは何か―永遠から
再生核研究所声明257(2015.11.05):無限大とは何か、無限遠点とは何か―新しい視点
再生核研究所声明232(2015.5.26):無限大とは何か、無限遠点とは何か―驚嘆すべきゼロ除算の結果
再生核研究所声明262(2015.12.09)::宇宙回帰説―ゼロ除算の拓いた世界観

とにかく、全直線が まるまる見える、立体射影の考えは、実に楽しく、面白いと言える。この考えは、美しい複素解析学を支える100年以上の伝統を持つ、私たちの空間に対する認識であった。これは永劫回帰の思想を裏付ける世界観を 楽しく表現していると考えて来た。
ところが、2014.2.2.に発見されたゼロ除算は、何とその無限遠点が、実は原点に一致しているという、事実を示している。それが、我々の数学であり、我々の世界を表現しているという。数学的にも、物理的にもいろいろ それらを保証する事実が明らかにされた。これは世界観を変える、世界史的な事件と考えられる:

地球平面説→地球球体説
天動説→地動説
1/0=∞若しくは未定義 →1/0=0

現在、まるで、宗教論争のような状態と言えるが、問題は、無限の彼方、無限遠点がどうして、突然、原点に戻っているかという、強力な不連続性の現象である。複数のEUの数学者に直接意見を伺ったところ、アリストテレスの世界観、世は連続であるに背馳して、そのような世界観、数学は受け入れられないと まるで、魔物でも見るかのように表情を歪めたものである。新しい数学は いろいろ証拠的な現象が沢山発見されたものの、まるで、マインドコントロールにでもかかったかのように 新しい数学を避けているように感じられる。数学的な内容は せいぜい高校生レベルの内容であるにも関わらず、考え方、予断、思い込み、発想の違いの為に、受けいれられない状況がある。
この声明では 盲点の視点から、強調したい存念を纏めたい。
直線をどこまでも どこまでも行ったら、どうなるだろうか? 関数 y = 1/xで 正方向からx がゼロに近づいたらどうなるであろうか? あるいは 同様に上記立体射影で 北極にどんどん近づいたら どうなるであろうか? どんどん進んだらどうなるであろうかという問題である。伝統的で自然な考えは 何に近づくかと発想して、近づいた先、具体的には、無限大や北極に(無限遠点)に行くと考えるのは当然ではないだろうか。この発想の基礎には連続性、あるいは極限値の考え方がある。近づいて行った先が、求める対象であると考えてきた。具体的な関数y = 1/x では 正方向からx がゼロに近づいたら,限りなく大きくなるので、無限大が 1/0 の自然な値であろうと考えてきた。ところがゼロ除算の数学は、突然ゼロであると言っている。驚嘆すべき現象、事件である。北極に近づいた先が北極(無限遠点)であるから,平面上のあらゆる方向の先は、北極(無限遠点)であろうと発想してきたが、実は突然、原点に飛んでいるということが明らかにされた。無限の先は、実はゼロであったという事実である。我々はどんどん近づく先を考えたが、真の先までは考えず、あくまでも近づく先を考えていたことになる。これは無限の先を見てきた時の,それこそ、盲点そのものであったと言えるのではないだろうか。無限の先は、連続性ではなく、実は強力な不連続性、飛びが生じていたという事実である。これは全く、思いがけない、現象である と言える。それは、盲点、あるいは落とし穴があったと表現できよう。
従って、無限の彼方に関する我々の世界観は 大きな変更を要求されることになるだろう。

以 上

再生核研究所声明292(2016.03.25) ユークリッド幾何学、非ユークリッド幾何学、平行線公理、そしてゼロ除算
(2016.3.23 朝、目を覚まして、情念と構想が閃いたものである。)
まず基本語をウイキペディアで確認して置こう:

https://ja.wikipedia.org/wiki/%E3%82%A8%E3%82%A6%E3%82%AF%E3%83%AC%E3%82%A4%E3%83%87%E3%82%B9
アレクサンドリアのエウクレイデス(古代ギリシャ語: Εὐκλείδης, Eukleídēs、ラテン語: Euclīdēs、英語: Euclid(ユークリッド)、紀元前3世紀? - )は、古代ギリシアの数学者、天文学者とされる。数学史上最も重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリアで活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた。

https://ja.wikipedia.org/wiki/%E9%9D%9E%E3%83%A6%E3%83%BC%E3%82%AF%E3%83%AA%E3%83%83%E3%83%89%E5%
非ユークリッド幾何学の成立: ニコライ・イワノビッチ・ロバチェフスキーは「幾何学の新原理並びに平行線の完全な理論」(1829年)において、「虚幾何学」と名付けられた幾何学を構成して見せた。これは、鋭角仮定を含む幾何学であった。ボーヤイ・ヤーノシュは父・ボーヤイ・ファルカシュの研究を引き継いで、1832年、「空間論」を出版した。「空間論」では、平行線公準を仮定した幾何学(Σ)、および平行線公準の否定を仮定した幾何学(S)を論じた。更に、1835年「ユークリッド第 11 公準を証明または反駁することの不可能性の証明」において、Σ と S のどちらが現実に成立するかは、如何なる論理的推論によっても決定されないと証明した。

ユークリッド幾何学は 2000年を超えて数学及び論理と あらゆる科学の記述の基礎になってきた。その幾何学を支える平行線の公理については、非ユークリッド幾何学の成立過程で徹底的に検討、議論され、逆に 平行線の公理がユークリッド幾何学の特徴的な仮定(仮説)で証明できない公理であることが明らかにされた。それとともに 数学とは何かに対する認識が根本的に変わり、数学とは公理系(仮説系)の上に建設された理論体系であって、絶対的な真理という概念を失った。
ここで焦点を当てたいのは 平行線の概念である。ユークリッド幾何学における平行線とは 任意の直線に対して、直線上以外の点を通って、それと交わらない直線のことで、平行線がただ1つ存在するというのがユークリッドの公理である。非ユークリッド幾何学では、そのような平行線が全然存在しなかったり、沢山存在する幾何学になっており、そのような幾何学は 実在し、現在も盛んに利用されている。
この平行線の問題が、ゼロ除算の発見1/0=0、台頭によって 驚嘆すべき、形相を帯びてきた。
ユークリッド自身、また、非ユークリッド幾何学の上記発見者たち、それに自ら深い研究をしていた天才ガウスにとっても驚嘆すべき事件であると考えられる。
何と ユークリッド空間で 平行線は ある意味で 全て原点で交わっている という、現象が明らかにされた。
もちろん、ここで交わっていることの意味を 従来の意味にとれば、馬鹿馬鹿しいことになる。
そこで、その意味をまず、正確に述べよう。まずは、 イメージから述べる。リーマン球面に立体射影させると 全ユークリッド平面は 球面から北極点を除いた球面上に一対一に写される。そのとき、球面の北極点に対応する点が平面上になく、想像上の点として無限遠点を付け加えて対応させれば、立体射影における円、円対応を考えれば、平面上の平行線は無限遠点で交わっているとして、すっきりと説明され、複素解析学における基本的な世界観を与えている。平行線は無限遠点で 角ゼロ(度)で交わっている(接している)も立体射影における等角性で保証される。あまりの美しさのため、100年を超えて疑われることはなく、世の全ての文献はそのような扱いになっていて数学界の定説である。
ところがゼロ除算1/0=0では 無限遠点は空間の想像上の点として、存在していても、その点、無限遠点は数値では ゼロ(原点)に対応していることが明らかにされた。 すなわち、北極(無限遠点)は南極(原点)と一致している。そのために、平行線は原点で交わっていると解釈できる。もちろん、全ての直線は原点を通っている。
この現象はユークリッド空間の考えを改めるもので、このような性質は解析幾何学、微積分学、複素解析学、物理学など広範に影響を与え、統一的に新しい秩序ある世界を構成していることが明らかにされた。2200年を超えて、ユークリッド幾何学に全く新しい局面が現れたと言える。
平行線の交わりを考えてみる。交わらない異なる2直線を1次方程式で書いて、交点の座標を求めて置く。その座標は、平行のとき、分母がゼロになって、交点の座標が求まらないと従来ではなっていたが、ゼロ除算では、それは可能で、原点(0,0)が対応すると解釈できる。ゼロ除算と解析幾何学からの帰結である。上記幾何学的な説明が、ゼロ除算で解析幾何学的にも導かれる。
一般の円の方程式を2次関数で表現すれば、(x^2+y^2) の係数がゼロの場合、直線の一般式になるが、ゼロ除算を用いると、それが保証されるばかりか、直線の中心は 原点である、直線も点円も曲率がゼロであることが導かれる。もちろん、ゼロ除算の世界では、全ての直線は原点を通っている。このとき、原点を無限遠点の映った影ともみなせ、原点はこのような意味で もともとの原点とこの意味での点としての、2重性を有し、この概念は今後大きな意味を有することになるだろう。
ゼロ除算1/0=0は ユークリッド幾何学においても、大きな変革を求めている。
                                     
以上


再生核研究所声明290(2016.03.01) 神の隠し事、神の意地悪、人類の知能の程
オイラーの公式 e^{pi i}= -1 は最も基本的な数、-1, pi, i, eの4つの数の間の簡潔な関係を確立させているとして、数学とは何かを論じて、神秘的な公式として、その様を詳しく論じた(No.81, May 2012(pdf 432kb)
www.jams.or.jp/kaiho/kaiho-81.pdf Traduzir esta página
19/03/2012 -ここでは、数学とは何かについて考えながら、数学と人間に絡む問題などについて、幅. 広く 面白く触れたい。)。
余りにも深い公式なので、神の人類に対する意地悪かと表現して、神は恥ずかしがり屋で、人類があまりに神に近づくのを嫌がっているのではないかと発想した。
ここ2年間、ゼロ除算を発見して、ゼロ除算の実在性は確信できたが、ゼロ除算の神秘的な歴史(再生核研究所声明287(2016.02.13)神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算)とともに、誠に神秘的な性質があるので その神秘性に触れたい。同時に これを未解決の問題として世に提起したい。
ゼロ除算はゼロで割ることを考えるであるが、アリストテレス以来問題とされ、ゼロの記録がインドで初めて628年になされているが、既にそのとき、正解1/0が期待されていたと言う。しかし、理論づけられず、その後1300年を超えて、不可能である、あるいは無限、無限大、無限遠点とされてきたものである。天才オイラーの無限であることの証明とその誤りを論じた論文があるが、アーベル、リーマンと継承されて現在に至る。他方極めて面白いのは、アリストテレス以来、ニュートン、アインシュタインで問題にされ、下記の貴重な言葉が残されている:
Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

現在、ゼロ除算の興味、関心は 相対性の理論との関係と、ゼロ除算が計算機障害を起すことから、論理の見直しと数体系の見直しの観点にある。さらに、数学界の難問、リーマン予想に関係していると言う。
ゼロ除算の神秘的な歴史は、早期の段階で ゼロ除算、割り算が乗法の逆で、不可能であるとの烙印を押され、確定的に、 数学的に定まった と 人は信じてしまったことにあると考えられる。さらに、それを天才達が一様に保証してきたことにある。誠に重い歴史である。
第2の要素も、極めて大事である。アリストテレス以来、連続性で世界を考える が世界を支配してきた基本的な考え方である。関数y=1/x の原点での値を考えるとき、正方向、あるいは 負方向からゼロに近づけば、正の無限や負の無限に近づくのをみて、ゼロ除算とは無限の何か、無限遠と考えるのは極めて自然で、誰もがそのように考えるだろう。
ところが、結果はゼロであるというのであるから、驚嘆して、多くの人は それは何だと顔さえしかめたものである。しばらく、話さえできない状況が国際的にも一部の友人たちの間でも1年を超えても続いた。 そこで、最近、次のような文書を公表した:

ゼロ除算についての謎 ― 神の意思は?:
ゼロ除算は数学的な真実で、我々の数学の基本的な結果です。ところが未だ、謎めいた現象があり、ゼロ除算の何か隠れた性質が有るように感じます。それはギリシャ、アリストテレスの世界観、世の連続性を否定し、強力な不連続性を表しています。強力な不連続性は普遍的に沢山あることが分かりましたが、肝心な次の等角写像での不連続性が分かりません:複素関数
W = z+ 1/z
は 単位円の外と内を [-2,+2] を除いた全複素平面上に一対一上へ等角に写します。単位円は[-2,+2]を往復するようにちょうど写ります。単位円が少しずれると飛行機の翼の断面のような形に写るので、航空力学での基本関数です。問題は、原点が所謂無限遠点に写っているということです。ところがゼロ除算では、無限遠点は空間の想像上の点としては考えられても、数値では存在せず、数値としては、その代わりに原点ゼロで、それで原点に写っていることになります。それで強力な不連続性を起こしている。
神が、そのように写像を定めたというのですが、何か上手い解釈が有るでしょうか?
神の意思が知りたい。
2016.2.27.16:46
既に 数学における強力な不連続性は 沢山発見され、新しい世界観として定着しつつあるが、一般の解析関数の孤立特異点での確定値がどのような意味があり、なぜそのような不連続性が存在するのかは、神の意思に関わることで、神秘的な問題ではないだろうか。 神秘の世界があることを指摘して置きたい。 
以 上


再生核研究所声明287(2016.02.12) 神秘的なゼロ除算の歴史―数学界で見捨てられていたゼロ除算
(最近 相当 ゼロ除算について幅広く歴史、状況について調べている。)
ゼロ除算とは ゼロで割ることを考えることである。ゼロがインドで628年に記録され、現代数学の四則演算ができていたが、そのとき、既にゼロで割ることか考えられていた。しかしながら、その後1300年を超えてずっと我々の研究成果以外解決には至っていないと言える。実に面白いのは、628年の時に、ゼロ除算は正解と判断される結果1/0=0が期待されていたということである。さらに、詳しく歴史を調べているC.B. Boyer氏の視点では、ゼロ除算を最初に考えたのはアリストテレスであると判断され、アリストテレスは ゼロ除算は不可能であると判断していたという。― 真空で比を考えること、ゼロで割ることはできない。アリストテレスの世界観は 2000年を超えて現代にも及び、我々の得たゼロ除算はアリストテレスの 世界は連続である に反しているので受け入れられないと 複数の数学者が言明されたり、情感でゼロ除算は受け入れられないという人は結構多い。
数学界では,オイラーが積極的に1/0 は無限であるという論文を書き、その誤りを論じた論文がある。アーベルも記号として、それを無限と表し、リーマンもその流れで無限遠点の概念を持ち、リーマン球面を考えている。これらの思想は現代でも踏襲され、超古典アルフォースの複素解析の本にもしっかりと受け継がれている。現代数学の世界の常識である。これらが畏れ多い天才たちの足跡である。こうなると、ゼロ除算は数学的に確定し、何びとと雖も疑うことのない、数学的真実であると考えるのは至極当然である。― ゼロ除算はそのような重い歴史で、数学界では見捨てられていた問題であると言える。
しかしながら、現在に至るも ゼロ除算は広い世界で話題になっている。 まず、顕著な研究者たちの議論を紹介したい:

論理、計算機科学、代数的な体の構造の問題(J. A. Bergstra, Y. Hirshfeld and J. V. Tucker)、
特殊相対性の理論とゼロ除算の関係(J. P. Barukcic and I. Barukcic)、
計算器がゼロ除算に会うと実害が起きることから、ゼロ除算回避の視点から、ゼロ除算の研究(T. S. Reis and James A.D.W. Anderson)。
またフランスでも、奇怪な抽象的な世界を建設している人たちがいるが、個人レベルでもいろいろ奇怪な議論をしている人があとを立たない。また、数学界の難問リーマン予想に関係しているという。

直接議論を行っているところであるが、ゼロ除算で大きな広い話題は 特殊相対性理論、一般相対性理論の関係である。実際、物理とゼロ除算の関係はアリストテレス以来、ニュートン、アインシュタインの中心的な課題で、それはアインシュタインの次の意味深長な言葉で表現される:

Albert Einstein:
Blackholes are where God divided by zero.
I don’t believe in mathematics.
George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} [1]:
1. Gamow, G., My World Line (Viking, New York). p 44, 1970.

数学では不可能である、あるいは無限遠点と確定していた数学、それでも話題が尽きなかったゼロ除算、それが予想外の偶然性から、思いがけない結果、ゼロ除算は一般化された除算,分数の意味で、何時でも唯一つに定まり、解は何時でもゼロであるという、美しい結果が発見された。いろいろ具体的な例を上げて、我々の世界に直接関係する数学で、結果は確定的であるとして、世界の公認を要請している:
再生核研究所声明280(2016.01.29) ゼロ除算の公認、認知を求める
Announcement 282: The Division by Zero $z/0=0$ on the Second Birthday

詳しい解説も次で行っている:
○ 堪らなく楽しい数学-ゼロで割ることを考える(18)
数学基礎学力研究会のホームページ
URLは http://www.mirun.sctv.jp/~suugaku

以 上


何故ゼロ除算が不可能であったか理由

1 割り算を掛け算の逆と考えた事
2 極限で考えようとした事
3 教科書やあらゆる文献が、不可能であると書いてあるので、みんなそう思った。

ガリレオ






AD

0 件のコメント:

コメントを投稿