早川書房、ノーベル賞「三冠」達成。目の付けどころがスゴいと話題に
文学賞カズオ・イシグロ氏のほか、経済学賞、物理学賞の関連本も
ーベル「三冠」を果たした早川書房の関連書籍の数々
10月になって続々とノーベル賞受賞者が発表されているが、にわかに注目を集めているのが早川書房だ。
文学賞のカズオ・イシグロ氏のほか、物理学と経済学の各賞で、受賞者が書いた本や登場する本を出版していたことで、先見性を称賛する声が続々と上がっている。
「重力波の観測」で物理学賞を受賞したライナー・ワイス、キップ・ソーン、バリー・バリッシュの3氏から直接取材し、その軌跡を詳細に記録したノンフィクションが「重力波は歌う」。
AMAZON/早川書房重力波の観測をめぐる、確執、駆け引きなどの人間ドラマを描いたこの本を絶賛する人は多い。
ノーベル物理学賞の重力波初観測の舞台裏を描いた『重力波は歌う』って本が超面白かったからみんな読むといいよ。彼らの何が凄いって「人間は必ず間違う」って確信から定期的に偽の重力波信号を混ぜてたとこ。だから初観測の時も「ダミーデータか?今って検証期間だったか?」とそっちしか疑ってない
AMAZON/早川書房
でも、行動経済学の本はこれだけ出しているわけじゃない。米国で行動経済学ブームの火付け役となったダン・アリエリー氏の本もしっかり抑えている。
セイラー教授の『行動経済学の逆襲』とカーネマン教授の『ファスト&スロー』だけでも凄いのに,ダン・アリエリーの一連の著作もなんと早川書房。マジで神ってる!これは「行動経済学」フェアを仕掛けるしかないっすね^^
『予想どおりに不合理』 http://amzn.to/2g5HPeB
AMAZON/早川書房
イシグロ氏とつながりの深い早川浩社長は5日の記者会見で以下のように話した。
近年候補に挙がり、近いうちに受賞されると思っていた。涙が出るほどうれしい
作者や関連分野の受賞が相次ぎ、あまりの大当たりっぷりに早川書房の翻訳SFファンタジイ編集部もTwitterで喜びを隠さない。
ノーベル物理学賞も重力波研究の受賞者たちを追った『重力波は歌う』があるし、文学賞カズオ・イシグロと経済学賞リチャード・セイヤーの受賞で、弊社がノーベル出版社賞かなにかとったみたいな勢い。
三冠を受け、ネット上では受賞直前に文庫化していたタイミングのよさや、海外の作品を長年紹介してきた同社への愛を語る人も。
しかし先月『重力波は歌う』を文庫化して今月カズオ・イシグロの『忘れられた巨人』を文庫化予定なの、早川書房の文庫化決める担当に時間遡行者でもいるんじゃないかってくらいタイミングが良いな。
(文学賞+経済学賞の余禄で早川書房がマニアックな翻訳ものにも冒険できる余裕が持てるに違いない、という期待にうち震えるわがTL。)
まさにそれ。子どもの頃、書店では真っ先に創元か早川の文庫コーナーに行っていた身としては、経営の順調さを願わずにいられない。とても興味深く読みました: ゼロ除算はどうでしょうか:再生核研究所声明 385(2017.10.11): 地の果て、無限の彼方、平面の究極の果てを観るー 永遠とは何か、無限の先の不思議さ
平面上をどこまでも どこまでもある直線上を一方方向に行ったらどうなるだろうか。永遠とはどのようなものだろうか? そのようなことを多くの人は自然に思う、考えるのではないだろうか。これについて どこまでも どこまでも行っても行き着くことはなく、どこまでも どこまでも行くと考えるのが、 ユークリッド幾何学に現れる空間の捉え方であった。― これは砂漠の文化を反映していると哲学の先生に聞いたことがある。果てしない空間と歩みからである。
これに対して、立体射影で平面を球面上に写せば、どのような方向に行っても球面上の北極に対応する点として無限遠点が考えられ、全平面は 球面上の北極点を除いた点に1対1に対応して、無限遠点を球面上の北極に対応させれば、全球面と拡張された平面は 全体が1対1に対応して、ある意味で平面は完全化される。 ― これはアレクサンドルフの1点コンパクト化と呼ばれている。平面上の直線も円も立体射影で球面上では円に写り、平面上の直線と円は、立体射影で球面上では、北極を通る円に対応するか、北極を通らない円に写るかの違いに過ぎないとなる。すると直線と円は全体として1対1に対応して、円を1方向に行けばぐるぐる回るように、平面上をどこまでも どこまでも直線上を一方方向に行ったら 無限遠点を経由して反対方向から戻ってくることになる。- (この詳しい説明はサイトで簡単に説明されているので知識の無い方は参照して下さい。 以下に出てくる、円の鏡像やローラン展開もそうです。) これは永劫回帰、輪廻思想を表現するものとして 実に美しく楽しい。- この思想は四季を有するアジア文化の世界観を表しているという。
上記2つの考えは、基本的な世界観で ユークリッド幾何学と非ユークリッド幾何学(楕円型)で、後者も確立して百年以上複素解析学を支える空間として定説になってきた。
ところがゼロ除算が齎した空間は これらとは全く異なる空間で、しかも、新しく発見された空間が 我々の初等数学全般を支える空間であることが 沢山の具体例で明らかにされてきた。
上記立体射影をもう1度振り帰えろう。その立体射影で、直線上を一方向にどんどん行けば、限りなく 球面上では 無限遠点に近づいていることが確認できる。そこで、その先、近づいた先を無限遠点として無限の記号で表してきた。どんどん球面上では北極に近づく、極限点は北極であると言える。しかしながら、ここで驚嘆すべきことがあった。近づいた先が無限遠点は良いが、実は究極の先で不連続性があって、突然、そこで 原点になっているというのが ゼロ除算の結果である。すなわち、W= 1/z に対して、 原点の値がゼロである。簡単な関数 y=1/x で原点の値はゼロである。ゼロの近くでプラス、マイナス無限に幾らでも近づくが、原点で不連続にゼロの値をとっている。繰り返し述べてきたようにこれが、アリストテレスの世界観に反し、ゼロ除算の理解を遅らせる、ゼロ除算が嫌われている一つの要素である。- 驚嘆すべき現象と言える。
どこまでも どこまでも直線上を一方方向に行ったら、限りなく無限遠点に近づく、しかしながらその先は、突然、原点に飛んでいる。動きの全体を簡単な関数y=1/xのグラフで理解して欲しい。
無限の先の不思議さに触れて行きたい。A を中心とするある円の、中心 A の鏡像は 世の常識と違って、実は中心 Aであることが証明された。中心Aの近くの点は無限遠点の近くに写るから、鏡像変換で中心 Aだけが 飛んで変に写っていることになる。この対応は円の半径には寄らない性質であることを確認したい。すると円外の無限遠点の近くが、中心 Aによることになり、無限遠点が一つだろうかという疑念が湧いてくるのではないだろうか。中心 Aごとに無限遠点が対応しているのではないだろうかとの思いがするだろう。- アレクサンドロフの1点コンパクト化とは、あらゆるコンパクト集合の外にある点を想像上で考えて1点コンパクト化と定義していて、1点は定義である。しかるに、立体射影では 原点の上に存在する北極点に対応する想像上の平面上の点として無限遠点が 定義されている。いずれも1点は定義で、イチ1についての意味は与えられていない。- さらに 立体射影が 平面の座標軸の取り方によっているのは歴然である。
さて、我々はゼロ除算算法を導入した。すなわち、 関数f(z)のa 点の周りでのローラン展開において 値f(a)を その展開における 定数項C_0で定義する。負べき項が存在するとき、z が aに近づくとき、f(z)は無限に、極に、無限遠点に近づくが、z が a自身ときは 値C_0をとる。この値は関数fによって 強力な不連続性で決まる。- これは無限の先に存在するという意味で、関数による無限遠点ともいえる。この値には不思議な性質があることを紹介しておこう:
次は 角の3等分を考えて生まれたNicomedes (BC 280—BC 120)の曲線である。
r = a + b/(cos theta);
a,b> 0 定数、x 軸を原線とする極座標。直線 x = bを考えるとこの関数のグラフは興味深い幾何学的な意味を有することが分かる(考えて欲しい)。もちろん、グラフはx 軸に対称で直線 x = bを漸近線にしている。aがゼロのとき、グラフは直線x = b である。しかしながらゼロ除算算法で、theta が 直角のとき、x,y直交座標系で、点(0,a)を表すことになり、この点の意味付けは 難しく神秘的とも言える。直線 x = bを漸近線にしているのに、奇妙な点(0,a)が曲線(関数)の無限遠点になっている。
次は Diocles (BC 249?-BC180?) の疾走線と呼ばれる面白い曲線であるが表現は複雑なので、適当な座標系で (2a –x)y^2 = x^3, r = 2a(1/ (cos theta) - cos theta) などと表されると述べるが、特異点ではいずれも美しい、関数のグラフの頂点が 無限遠点になる。この発現は実に面白い。― それにしてもギリシャ文化の素晴らしさに感銘を受けてしまう。
今回の話題はホットでいわば最前線の研究課題とも言えるので自由に考え、かつ新しい世界を探検して欲しい。元前橋工科大学教授 奥村博氏(Ph D.)の楽しい数学は大いに楽しめるのではないでしょうか。円と直線に関するユークリッド幾何学(和算)に ゼロ除算は新しい世界を拓いている。沢山ゼロ除算の結果が幾何学的に現れていて実に楽しい。それらは、 ユークリッド以来の新しい世界である。
以 上再生核研究所声明353(2017.2.2) ゼロ除算 記念日2014.2.2 に 一般の方から100/0 の意味を問われていた頃、偶然に執筆中の論文原稿にそれがゼロとなっているのを発見した。直ぐに結果に驚いて友人にメールしたり、同僚に話した。それ以来、ちょうど3年、相当詳しい記録と経過が記録されている。重要なものは再生核研究所声明として英文と和文で公表されている。最初のものは再生核研究所声明 148(2014.2.12): 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志で、最新のはAnnouncement 352 (2017.2.2): On the third birthday of the division by zero z/0=0である。アリストテレス、ブラーマグプタ、ニュートン、オイラー、アインシュタインなどが深く関与する ゼロ除算の神秘的な永い歴史上の発見であるから、その日をゼロ除算記念日として定めて、世界史を進化させる決意の日としたい。ゼロ除算は、ユークリッド幾何学の変更といわゆるリーマン球面の無限遠点の考え方の変更を求めている。― 実際、ゼロ除算の歴史は人類の闘争の歴史と共に 人類の愚かさの象徴であるとしている。心すべき要点を纏めて置きたい。1) ゼロの明確な発見と算術の確立者Brahmagupta (598 - 668 ?) は 既にそこで、0/0=0 と定義していたにも関わらず、言わば創業者の深い考察を理解できず、それは間違いであるとして、1300年以上も間違いを繰り返してきた。2) 予断と偏見、慣習、習慣、思い込み、権威に盲従する人間の精神の弱さ、愚かさを自戒したい。我々は何時もそのように囚われていて、虚像を見ていると 真智を愛する心を大事にして行きたい。絶えず、それは真かと 問うていかなければならない。3) ピタゴラス派では 無理数の発見をしていたが、なんと、無理数の存在は自分たちの世界観に合わないからという理由で、― その発見は都合が悪いので ― 、弟子を処刑にしてしまったという。真智への愛より、面子、権力争い、勢力争い、利害が大事という人間の浅ましさの典型的な例である。4) この辺は、2000年以上も前に、既に世の聖人、賢人が諭されてきたのに いまだ人間は生物の本能レベルを越えておらず、愚かな世界史を続けている。人間が人間として生きる意義は 真智への愛にある と言える。5) いわば創業者の偉大な精神が正確に、上手く伝えられず、ピタゴラス派のような対応をとっているのは、本末転倒で、そのようなことが世に溢れていると警戒していきたい。本来あるべきものが逆になっていて、社会をおかしくしている。6) ゼロ除算の発見記念日に 繰り返し、人類の愚かさを反省して、明るい世界史を切り拓いて行きたい。以 上追記:The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and world:Division by Zero z/0 = 0 in Euclidean SpacesHiroshi Michiwaki, Hiroshi Okumura and Saburou SaitohInternational Journal of Mathematics and Computation Vol. 28(2017); Issue 1, 2017), 1-16.http://www.scirp.org/journal/alamt http://dx.doi.org/10.4236/alamt.2016.62007
http://www.ijapm.org/show-63-504-1.html
http://www.diogenes.bg/ijam/contents/2014-27-2/9/9.pdf再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告http://ameblo.jp/syoshinoris/theme-10006253398.html1/0=0、0/0=0、z/0=0http://ameblo.jp/syoshinoris/entry-12276045402.html1/0=0、0/0=0、z/0=0http://ameblo.jp/syoshinoris/entry-12263708422.html1/0=0、0/0=0、z/0=0http://ameblo.jp/syoshinoris/entry-12272721615.html再生核研究所声明368(2017.5.19)ゼロ除算の意義、本質ゼロ除算の本質、意義について、既に述べているが、参照すると良くまとめられているので、初めに復習して、新しい視点を入れたい。再生核研究所声明359(2017.3.20) ゼロ除算とは何か ― 本質、意義ゼロ除算の理解を進めるために ゼロ除算とは何か の題名で、簡潔に表現して置きたい。 構想と情念、想いが湧いてきたためである。基本的な関数y=1/x を考える。 これは直角双曲線関数で、原点以外は勿論、値、関数が定義されている。問題はこの関数が、x=0 で どうなっているかである。結論は、この関数の原点での値を ゼロと定義する ということである。 定義するのである。定義であるから勝手であり、従来の定義や理論に反しない限り、定義は勝手であると言える。原点での値を明確に定義した理論はないから、この定義は良いと考えられる。それを、y=1/0=0 と記述する。ゼロ除算は不可能であるという、数学の永い定説に従って、1/0 の表記は学術書、教科書にもないから、1/0=0 の記法は 形式不変の原理、原則 にも反しないと言える。― 多くの数学者は注意深いから、1/0=\infty の表記を避けてきたが、想像上では x が 0 に近づいたとき、限りなく 絶対値が大きくなるので、複素解析学では、表現1/0=\infty は避けても、1/0=\infty と考えている事は多い。(無限大の記号がない時代、アーベルなどもそのような記号を用いていて、オイラーは1/0=\inftyと述べ、それは間違いであると指摘されてきた。 しかしながら、無限大とは何か、数かとの疑問は 続いている。)。ここが大事な論点である。近づいていった極限値がそこでの値であろうと考えるのは、極めて自然な発想であるが、現代では、不連続性の概念 が十分確立されていて、極限値がそこでの値と違う例は、既にありふれている。― アリストテレスは 連続性の世界観をもち、特にアリストテレスの影響を深く受けている欧米の方は、この強力な不連続性を中々受け入れられないようである。無限にいくと考えられてきたのが突然、ゼロになるという定義になるからである。 しかしながら、関数y=1/xのグラフを書いて見れば、原点は双曲線のグラフの中心の点であり、美しい点で、この定義は魅力的に見えてくるだろう。定義したことには、それに至るいろいろな考察、経過、動機、理由がある。― 分数、割り算の意味、意義、一意性問題、代数的な意味づけなどであるが、それらは既に数学的に確立しているので、ここでは触れない。すると、定義したからには、それがどのような意味が存在して、世の中に、数学にどのような影響があるかが、問題になる。これについて、現在、初等数学の学部レベルの数学をゼロ除算の定義に従って、眺めると、ゼロ除算、すなわち、 分母がゼロになる場合が表現上現れる広範な場合に 新しい現象が発見され、ゼロ除算が関係する広範な場合に大きな影響が出て、数学は美しく統一的に補充,完全化されることが分かった。それらは現在、380件以上のメモにまとめられている。しかしながら、世界観の変更は特に重要であると考えられる:複素解析学で無限遠点は その意味で1/0=0で、複素数0で表されること、アリストテレスの連続性の概念に反し、ユークリッド空間とも異なる新しい空間が 現れている。直線のコンパクト化の理想点は原点で、全ての直線が原点を含むと、超古典的な結果に反する。更に、ゼロと無限の関係が明らかにされてきた。ゼロ除算は、現代数学の初等部分の相当な変革を要求していると考えられる。以 上ゼロ除算の代数的な意義は、山田体の概念で体にゼロ除算を含む構造の入れ方、一般に体にゼロ除算の概念が入れられるが、代数的な発展については 専門外で、触れられない。ただ、計算機科学でゼロ除算と代数的な構造について相当議論している研究者がいる。ゼロ除算の解析学的な意義は、従来孤立特異点での研究とは、孤立点での近傍での研究であり、正確に述べれば 孤立特異点そのものでの研究はなされていないと考えられる。なぜならば、特異点では、ゼロ分のとなり、分子がゼロの場合には ロピタルの定理や微分法の概念で 極限値で考えてきたが、ゼロ除算は、一般に分子がゼロでない場合にも意味を与え、極限値でなくて、特異点で 何時でも有限確定値を指定できる ― ゼロ除算算法。初めて、特異点そのものの世界に立ち入ったと言える。従来は孤立特異点を除いた世界で 数学を考えてきたと言える。その意味でゼロ除算は 全く新しい数学、世界であると言える。典型的な結果は tan(\pi/2) =0で、y軸の勾配がゼロであることである。ゼロ除算の幾何学的な意義は、ユークリッド空間のアレクサンドロフの1点コンパクト化に、アリストテレスの連続性の概念でない、強力な不連続性が現れたことで、全く新しい空間の構造が現れ、幾何学の無限遠点に関係する部分に全く新規な世界が現れたことである。所謂無限遠点が数値ゼロで、表現される。さらに、およそ無限量と考えられたものが、実は、数値ゼロで表現されるという新しい現象が発見された。tan(\pi/2) =0の意味を幾何学的に考えると、そのことを表している。これはいろいろな恒等式に新しい要素を、性質を顕にしている。ゼロが、不可能性を表現したり、基準を表すなど、ゼロの意義についても新しい概念が現れている。以 上再生核研究所声明 375 (2017.7.21):ブラックホール、ゼロ除算、宇宙論本年はブラックホール命名50周年とされていたが、最近、wikipedia で下記のように修正されていた:名称[編集]"black hole"という呼び名が定着するまでは、崩壊した星を意味する"collapsar"[1](コラプサー)などと呼ばれていた。光すら脱け出せない縮退星に対して "black hole" という言葉が用いられた最も古い印刷物は、ジャーナリストのアン・ユーイング (Ann Ewing) が1964年1月18日の Science News-Letter の "'Black holes' in space" と題するアメリカ科学振興協会の会合を紹介する記事の中で用いたものである[2][3][4]。一般には、アメリカの物理学者ジョン・ホイーラーが1967年に "black hole" という名称を初めて用いたとされるが[5]、実際にはその年にニューヨークで行われた会議中で聴衆の一人が洩らした言葉をホイーラーが採用して広めたものであり[3]、またホイーラー自身は "black hole" という言葉の考案者であると主張したことはない[3]。https://ja.wikipedia.org/wiki/%E3%83%96%E3%83%A9%E3%83%83%E3%82%AF%E3%83%9B%E3%83%BC%E3%83%AB世界は広いから、情報が混乱することは よく起きる状況がある。ブラックホールの概念と密接な関係のあるゼロ除算の発見(2014.2.2)については、歴史的な混乱が生じないようにと 詳しい経緯、解説、論文、公表過程など記録するように配慮してきた。ゼロ除算は簡単で自明であると初期から述べてきたが、問題はそこから生じるゼロ除算算法とその応用であると述べている。しかし、その第1歩で議論は様々でゼロ除算自身についていろいろな説が存在して、ゼロ除算は現在も全体的に混乱していると言える。インターネットなどで参照出来る膨大な情報は、我々の観点では不適当なものばかりであると言える。もちろん学術界ではゼロ除算発見後3年を経過しているものの、古い固定観念に囚われていて、新しい発見は未だ認知されているとは言えない。最近国際会議でも現代数学を破壊するので、認められない等の意見が表明された(再生核研究所声明371(2017.6.27)ゼロ除算の講演― 国際会議 https://sites.google.com/site/sandrapinelas/icddea-2017 報告)。そこで、初等数学から、500件を超えるゼロ除算の証拠、効用の事実を示して、ゼロ除算は確定していること、ゼロ除算算法の重要性を主張し、基本的な世界を示している。ゼロ除算について、膨大な歴史、文献は、ゼロ除算が神秘的なこととして、扱われ、それはアインシュタインの言葉に象徴される:Here, we recall Albert Einstein's words on mathematics:Blackholes are where God divided by zero.I don't believe in mathematics.George Gamow (1904-1968) Russian-born American nuclear physicist and cosmologist remarked that "it is well known to students of high school algebra" that division by zero is not valid; and Einstein admitted it as {\bf the biggest blunder of his life} (Gamow, G., My World Line (Viking, New York). p 44, 1970).ところが結果は、実に簡明であった:The division by zero is uniquely and reasonably determined as 1/0=0/0=z/0=0 in the natural extensions of fractions. We have to change our basic ideas for our space and worldしかしながら、ゼロ及びゼロ除算は、結果自体は 驚く程単純であったが、神秘的な新たな世界を覗かせ、ゼロ及びゼロ除算は一層神秘的な対象であることが顕になってきた。ゼロのいろいろな意味も分かってきた。 無限遠点における強力な飛び、ワープ現象とゼロと無限の不思議な関係である。アリストテレス、ユークリッド以来の 空間の認識を変える事件をもたらしている。 ゼロ除算の結果は、数理論ばかりではなく、世界観の変更を要求している。 端的に表現してみよう。 これは宇宙の生成、消滅の様、人生の様をも表しているようである。 点が球としてどんどん大きくなり、球面は限りなく大きくなって行く。 どこまで大きくなっていくかは、 分からない。しかしながら、ゼロ除算はあるところで突然半径はゼロになり、最初の点に帰するというのである。 ゼロから始まってゼロに帰する。 ―― それは人生の様のようではないだろうか。物心なしに始まった人生、経験や知識はどんどん広がって行くが、突然、死によって元に戻る。 人生とはそのようなものではないだろうか。 はじめも終わりも、 途中も分からない。 多くの世の現象はそのようで、 何かが始まり、 どんどん進み、そして、戻る。 例えばソロバンでは、願いましては で計算を始め、最後はご破産で願いましては、で終了する。 我々の宇宙も淀みに浮かぶ泡沫のようなもので、できては壊れ、できては壊れる現象を繰り返しているのではないだろうか。泡沫の上の小さな存在の人間は結局、何も分からず、われ思うゆえにわれあり と自己の存在を確かめる程の能力しか無い存在であると言える。 始めと終わり、過程も ようとして分からない。ブラックホールとゼロ除算、ゼロ除算の発見とその後の数学の発展を眺めていて、そのような宇宙観、人生観がひとりでに湧いてきて、奇妙に納得のいく気持ちになっている。以 上


Simon_Sin @Simon_Sin
安田 洋祐 @yagena
早川書房 翻訳SFファンタジイ編集部 @hykw_SF
さてぺら @sateperaga
橋本麻里 @hashimoto_tokyo
縞うさぎ/詫摩雅子 @shima_usa96










0 件のコメント:
コメントを投稿