除法
20 \div 4=5
除法 (じょほう、除算、割り算とも、 英: division) とは、四則演算(加・減・乗・除)のひとつで、乗法の逆演算である。
二項演算で、日本では除算記号として「÷」を使う。左項の数を「被除数 (英: dividend) または「分子 (英: numerator)」、右項の数を「除数 (英: divisor) 」または「分母 (英: denominator)」と言う。演算の結果を「商 (英: quotient)」と言い、整数の除法のように「割り切れない」場合の余りを「剰余 (英: remainder)」と言う。与えられた被除数と除数から商と剰余を計算することを割り算、除算といい、計算法を指して除法という。
数値以外にも一般化すると、除法は、乗法を持つ代数的構造について「逆元を掛けること」として考えることができる。数値以外では一般には乗法が可換であるとは限らないため、除法も左右 2 通り考えられる。
目次 [非表示]
1 整数の除法
2 有理数の除法
3 実数の除法
4 複素数の除法
5 0で割ること
6 ユークリッド除法と除算アルゴリズム
7 等分除と包含除
8 伝承
9 関連項目
10 注記
整数の除法[編集]
整数 m と n に対して、m = qn を満たす整数 q が唯一つ定まるとき、m ÷ n = q, q =
m
n
などと表して、m は n で整除(せいじょ)される、割り切れる(わりきれる、英: divisible)あるいは n は m を整除する、割り切るなどと言う。
またこのとき、m を被除数(ひじょすう、 (英: dividend) あるいは実(じつ)といい、n を除数 (英: divisor) あるいは単に法 (ほう、英: modulus)といい、q を商 (しょう、英: quotient) と呼ぶ。またこれらを併せて m を n で割った商は q である、m の n を法とする商、あるいは法 n に関する商 (英: "quotient" modulo "n") などとも言う。
m が n で割り切れない場合にも、剰余 (じょうよ、 英: remainder, residue; 余り)の概念を導入して除法を(0 で割ることを除いて)整数全体での演算に拡張することができる。具体的には、整数 m を n で割ったとき、整商が q で剰余が r であることを
m = qn + r かつ 0 ≤ r < n
が満たされることであると定義する。これは、感覚的には被除数から除数を引けるだけ引いた残りを剰余と定めているということである。「r は m の n を法とする(法 n に関する)剰余 (英: residue modulo "n") である」などのように法を明示することもある。
このような整数 q, r は、m, n によって唯一組にきまる(除法の原理)。また、この等式が成り立つことを除算記号 ÷ と記号 … を用いて
m ÷ n = q … r
と表す。
また、 m = qn + r だが 0 ≤ r < n とは限らない r も剰余と呼ぶことがあり、 r が正の場合はこれを正剰余と呼び、負の場合は負剰余と呼ぶ。剰余としては 0 ≤ r < n を満たす r とする最小非負剰余を用いるのが一般的であり、通常、余りとは最小非負剰余のことである。 m = qn + r が -
n
2
≤ r <
n
2
を満たす r は絶対値最小剰余と呼ぶ。
しかし、何の計算かにもよるが、剰余としてこれらのどれを採るかは選択の余地があり、計算機やコンピュータの機種により、あるいはプログラミング言語やその処理系により、実際のところまちまちである。簡単な分析とサーベイが "Division and Modulus for Computer Scientists" という文献にまとまっている[1]。
有理数の除法[編集]
上では考えている数(自然数もしくは整数)の範囲内で商を取り直し剰余を定義することにより、除法をその数の範囲全体で定義することができることを述べた。しかしよく知られているように、数の範囲を有理数まで拡張し、商のとり方に有理数を許すことにより、剰余の概念は取り除かれ、有理数の全体で四則演算が自由に行えるようになる。ただし、0 で割ることは常に許されない。
整数 m と n について m が n で整除されない場合にも、m の n を法とした商を m/n などと記して用いる(分数表記)。分数表記を用いた有理数の表示は一意的ではない。
\frac{p}{q}\div\frac{r}{s} = \frac{p \times s}{q \times r}.
このような意味で四則演算が自由に行える集合の抽象化として体の概念が現れる。すなわち、有理数の全体が作る集合 Q は体である。
実数の除法[編集]
実数は有理数の極限として表され、それによって有理数の演算から実数の演算が矛盾なく定義される。すなわち、任意の実数 x, y (y ≠ 0) に対し xn → x, yn → y (n → ∞) を満たす有理数の列 {xn}n∈N, {yn}n∈N (例えば、x, y の小数表示を第 n 桁までで打ち切ったものを xn, yn とするような数列)が与えられたとき
x/y := \lim_{n\to\infty}x_n/y_n
と定めると、この値は極限値が x, y である限りにおいて数列のとり方によらずに一定の値をとる。これを実数の商として定めるのである。
複素数の除法[編集]
実数の除法を用いれば複素数の除法が、任意の複素数 a + ib, c + id (ただし c と d は同時には 0 にならない)に対して
\frac{a+ib}{c+id}:=
\frac{ac+bd}{c^2+d^2} + i\,\frac{bc-ad}{c^2+d^2}
として定義できる。極形式では
\frac{z}{w}=\frac{|z|e^{\text{arg}\,z}}{|w|e^{\text{arg}\,w}}:=\frac{|z|}{|w|}e^{\text{arg}\,z-\text{arg}\,w}
と書ける。やはり |w| = 0 つまり w = 0 のところでは定義できない。
0で割ること[編集]
詳細は「ゼロ除算」を参照
代数的には、除法は乗法の逆の演算として定義される。つまり a を b で割るという除法は
a \div b = x \iff a = b \times x
を満たす唯一つの x を与える演算でなければならない。ここで、唯一つというのは簡約律
bx = by \Rightarrow x=y
が成立するということを意味する。この簡約律が成立しないということは、bx = by という条件だけからは x = y という情報を得たことにはならないということであり、そのような条件下で強いて除法を定義したとしても益が無いのである。
実数の乗法において、簡約が不能な一つの特徴的な例として b = 0 である場合、つまり「0 で割る」という操作を挙げることができる。実際、b = 0 であるとき a = bx によって除法 a ÷ b を定めようとすると、もちろん a = 0 である場合に限られるが、いかなる x, y についても 0x = 0 = 0y が成立してしまって x の値は定まらない。無論、a ≠ 0 ならば a = 0x なる x は存在せず a ÷ b は定義不能である。つまり、実数のもつ代数的な構造と 0 による除算は両立しない。
ユークリッド除法と除算アルゴリズム[編集]
「ユークリッド除法」および「除算アルゴリズム」を参照
等分除と包含除[編集]
Edit-find-replace.svg
この記事には独自研究が含まれているおそれがあります。問題箇所を検証し出典を追加して、記事の改善にご協力ください。議論はノートを参照してください。(2013年11月)
Question book-4.svg
この記事の内容の信頼性について検証が求められています。
確認のための文献や情報源をご存じの方はご提示ください。出典を明記し、記事の信頼性を高めるためにご協力をお願いします。議論はノートを参照してください。(2013年11月)
日本において、初等的な教育手法として、(整数の)除法においてその「意味」として等分除と包含除の 2 種類に分類し導入をはかる、というものがある。ある量が「基準となる量」の「幾つ分」に除されるかを考えるとき、「基準となる量」を求めるのが等分除、「幾つ分」になるかを求めるのが包含除である。
等分除と包含除について東京書籍算数教科書の著者の1人、加藤明(兵庫教育大学大学院教授)は、
「2年 かけ算」で述べたように、「3×4」の式の意味は、図のように「3個の集まり」が「4つ分」あること、つまり「同じ数ずつの集まり」が「いくつ分」かあるときに、全体の個数を求める計算がかけ算でした。数学的にはたし算の逆算がひき算であり、かけ算の逆算がわり算です。したがって、、わり算とは、かけ算の式の意味の「同じ数ずつ」と、「いくつ分」を求めるときに使う演算なのです。
— 加藤明、文溪堂 お母さんの算数ノート p78
として、
(ア) 12このおはじきを、同じ数ずつ4つに分ける場合(「等分除(とうぶんじょ)」といいます)
— 加藤明、文溪堂 お母さんの算数ノート p78
(イ) 12このおはじきを、3こずつ分ける場合(「包含除(ほうがんじょ)」といいます)
— 加藤明、文溪堂 お母さんの算数ノート p79
と述べている[2]。なお、ここで「式の意味」なる語が出てくるが、『「3×4」の意味は「3個の集まり」が「4つ分」あること』といったような「式の意味」の定義(「立式」といった、やはりその世界のみの用語が使われる)は、日本の一部の初等教育の世界にだけ存在する「定義」である(かけ算の順序問題)。[要出典]
伝承[編集]
割算天下一を名乗った毛利重能の著書「割算書」によれば、割算の起源は以下のように記されている。
夫割算と云は、寿天屋辺連と云所に智恵万徳を備はれる名木有。此木に百味之含霊の菓、一生一切人間の初、夫婦二人有故、是を其時二に割初より此方、割算と云事有
— 鳴海風、小説になる江戸時代の数学者[3]
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
(本当に面白い、中国茶。研究室に来る途中、 ちょうど、2014.5.5.8:00です。考えがひとりでにわきました。知りたい神の意志です。例の数学ですね。 どうして、無限遠点とゼロ点が 一致しているかです。作文が出来そうです。)
ゼロで割ることの一般化について、発見して3か月目に
100/0=0,0/0=0 誕生日(2014.2.2) 3か月:
足し算、引き算、掛け算は 何時もできる。 割り算はゼロで割ることが出来なかった。ゼロで割ればゼロになる、良い、自然な解釈を発見して、ちょうど3か月になる。ゼロで割る数学は 爆発、衝突などの特異現象を記述しているが、複素解析学では、従来の、無限遠点に対して、ゼロを対応させるべきとして、とんでもない現象を示している。
と記述し、詳しい経過
再生核研究所声明148(2014.2.12) 100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
や その後の経過、内容についても纏めている:
再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方
5日朝 ひとりでにわいた、新鮮な想いをできるだけ多くの人に、その奇妙な現象を表現して、世界の理解を深めたい。― 神も 世界も かすかにしか、感じられない - しかしながら ― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
述語やグラフに馴染みの薄い方は、下記注でインターネットなどで確認、 補充して下さい。要するに、 直角双曲線y=1/xのグラフも 立体射影における北極(無限遠点) も ゼロで割る考えの自然な一般化は 原点でゼロ、1/0=0, z/0=0 と 数学はなっている。十分な一般化でも、それ以外には考えられないとなっている。ところが、1変数複素解析学を実現させる立体射影では、複素数の世界では、1/0は 無限遠点として、球の北極を考えるのが世界の常識で、複素解析学の教科書、学術書は全て、現在そうなっている。そこで、発見された新しい概念に基づいて、そこに問題を提起し、無限遠点、無限は数ではないのではないか、おかしいのではないか と述べている。 他方、1/0=0 は割り算の概念を越えて、関数y=1/xとW=1/zが それぞれ、実数全体や複素数全体を 1対1に ちょうど対応させるなど 極めて自然な性質を有する。
しかしながら、ここで、極めて、面白い現象が起きている。 双曲線でも、球でも、原点の近くで、無限の彼方にとんでいるのに、原点で、突然ゼロに戻っているという、驚嘆すべき現象である。この驚嘆すべき不連続性のために、ゼロで割る新しい考えは受け入れられないと 人は思うだろうか?
逆に、その特異性こそ、ゼロで割ることの本質、要点であり、神の意志、思わせぶりが出ていると考えるべきか?
ビッグバン現象、接触現象、生と死の一致、永劫回帰の思想、ユニバースは 一体どうなっているのか (神の意志) と、そのからくり、 どうなっているのか しきりに 切に 知りたい。
天動説が地動説に変わったように、何時か、この強烈な不連続性を、ユニバースの常識と捉える時代が来るだろうか。それとも 神の気まぐれに 終わるだろうか。
注:
1. 直角双曲線
www.sist.ac.jp/.../chokkaku_sokyokusen.html
Traduzir esta página
反比例の関係を表すxy=k(k≠0)のような関係をx軸y軸平面に描くと、図のような直角双曲線となる。 kの値によって違う線となるが、いずれもx=0(y軸)とy=0(x軸)に限り ...
ステレオ投影:ウィキペディアより
数学的な定義
単位球の北極から z = 0 の平面への立体射影を表した断面図。P の像がP ' である。
冒頭のように、数学ではステレオ投影の事を写像として立体射影と呼ぶので、この節では立体射影と呼ぶ。 この節では、単位球を北極から赤道を通る平面に投影する場合を扱う。その他の場合はあとの節で扱う。
3次元空間 R3 内の単位球面は、x2 + y2 + z2 = 1 と表すことができる。ここで、点 N = (0, 0, 1) を"北極"とし、M は球面の残りの部分とする。平面 z = 0 は球の中心を通る。"赤道"はこの平面と、この球面の交線である。
M 上のあらゆる点 P に対して、N と P を通る唯一の直線が存在し、その直線が平面z = 0 に一点 P ' で交わる。Pの立体射影による像は、その平面上のその点P ' であると定義する。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0,
Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory.(in press).
Tychonoff’s Theorem/著者不明
¥2,221
Amazon.co.jp
Tychonoff’s Theorem/著者不明
¥価格不明
Amazon.co.jp
Random Fields on the Sphere: Representation, Li.../Domenico Marinucci
¥8,683
Amazon.co.jp
Data Analysis: Statistical and Computational Me.../Siegmund Brandt
¥10,017
Amazon.co.jp
Nonnegative Matrix and Tensor Factorizations: A.../Andrzej Cichocki
¥18,924
Amazon.co.jp
Picard Theorem/著者不明
¥価格不明
Amazon.co.jp
Complex Analysis (Universitext)/Eberhard Freitag
¥7,787
Amazon.co.jp
0 件のコメント:
コメントを投稿